Preview

Lomonosov Geography Journal

Advanced search

Orographic factor in the generation of along-slope currents in the south-eastern part of the Baltic Sea

Abstract

Influence of morphological features of the underwater coastal slope relief on the generation of storminduced high-energy bottom gravity currents is discussed. Such currents are capable of transporting beach sediments from the swash zone to the outer boundary of the coastal zone. Characteristic features of the regions (orientation of relief forms, gradients of the underwater coastal slope etc.) with positive and negative forms of relief oriented across the coast were identified and investigated by example of the underwater coastal slope of the Sambian Peninsula (Kaliningrad Oblast, south-eastern part of the Baltic Sea). Raster image processing methods were applied to the digital elevation model, and potential steepest descend trajectories of beach sediments were calculated. It is shown that the orographic factor is characteristic of several areas of the underwater coastal slope of the Sambian Peninsula, namely the Svetlogorsk Bay (from the Cape Taran to Pionersky) and the area from the Cape Gvardeisky to Zelenogradsk town at the northern coast, and the area from Yantarny settlement to Donskoe settlement at the western coast. In these areas the slope of the bottom can reach 2° value. These morphological peculiarities of the coastal zone affect the sediment balance, contributing to the transport of suspended matter to greater depths, and causing the degradation and erosion of beaches.

About the Authors

A. V. Kileso
Immanuel Kant Baltic Federal University
Russian Federation
Institute of Environmental Management, Urban Development and Spatial Planning, Department of Geography of the Ocean, Senior Lecturer


A. N. Demidov
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Oceanology, Senior Scientific Researcher, PhD. in Geography


V. A. Gritsenko
Immanuel Kant Baltic Federal University
Russian Federation
Institute of Environmental Management, Urban Development and Spatial Planning, Department of Geography of the Ocean, Head of department, Professor, D.Sc. in Physics and Mathematics


References

1. Ajbulatov N.A. Dinamika tverdogo veshhestva v shel’fovoj zone [Dynamics of solid material in the shelf zone]. Leningrad, Gidrometeoizdat Publ., 1990, 271 p. (In Russian)

2. Ancyferov S.M. O rasprostranenii koncentracij i razmerov tverdyh chastic v otkrytom potoke [On the distribution of concentrations and dimension of solids in the open stream]. Dinamika i termika rek. Eds. S.M. Ancyferov, V.K Debol’skij, Moscow, Strojizdat Publ., 1973. p. 310–317. (In Russian)

3. Ancyferov S.M., Basin’ski T., Kos’jan R.D., Pyhov N.V., Pustel’nikov O.S. Raspredelenie vzveshennyh nanosov nad profilem beregovogo sklona v rajone Lyubyatovo [Distribution of suspended sediment over the coastal slope profile in the Lyubyatovo area]. Rezul’taty mezhdunarodnogo eksperimenta LJUBJATOVO–76 Proceedings of the Institute of Water Construction of the Polish Academy of Sciences, Gdan’sk, 1978, no. 5, p. 211–227. (In Russian)

4. Atlas geologicheskih i ekologo-geologicheskih kart Rossijskogo sektora Baltijskogo morya [Atlas of geological and environmental geological maps of the Russian Baltic Sea zone] Ed. O.V. Petrov, St. Petersburg, VSEGEI [Russian Research Geological Institute named after A.P. Karpinsky], 2010, 78 p. (In Russian)

5. Babakov A.N. Prostranstvenno-vremennaya struktura techenij i migracij nanosov v beregovoj zone jugo-vostochnoj Baltiki (Sambijskij p-ov i Kurshskaya kosa) [Spatio-temporal structure of currents and migration of sediment flows in the coastal zone of southeastern Baltic (the Sambian Peninsula and the Curonian Spit)]: PhD Thesis in Geogr., Kaliningrad, Kaliningrad State University Publ., 2003, 273 p. (In Russian)

6. Burrough P.A., McDonell R.A. Principles of Geographical Information Systems. New York, Oxford University Press, 1998, 190 p.

7. Carter L., Burnett D., Drew S., Hagadorn L., Marle G., Bartlett-McNeil D., Irvine N. Submarine Cables and the Oceansconnecting the world. UNEP-WCMC Biodiversity Series 31. ICPC/ UNEP/UNEP-WCMC, 2009, 64 p.

8. Gonzales R., Vuds R. Cifrovaja obrabotka izobrazhenij [Digital image processing]. Moscow, Tehnosfera Publ., 2005, 1072 p. (In Russian)

9. Gritsenko V., Sviridov N. Role of storms in formation of turbulent sea currents in the near-shore zone. Baltica. Special Publication 12, p. 28–31.

10. Hsu K.J. Physics of Sedimentology. Springer, 2004, 240 p.

11. Jenson S.K., Domingue J.O. Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Engineering and Remote Sensing, 1988, 54 (11), p. 1593–1600.

12. Kileso A.V., Isachenko I.A., Gritsenko V.A., Burnashov E.M., Chernyshkov P.P. Orographic risks of bottom topography and sustainability of the sea coasts of the Kaliningrad region, Russia. Journal of Environmental Hydrology, 2016, vol. 25, p. 2.

13. Krek A., Stont Zh., Ulyanova M. Alongshore bed load transport in the southeastern part of the Baltic Sea under changing hydrometeorological conditions: Recent decadal data. Regional Studies in Marine Science, 2016, p. 81–87.

14. Leont’ev I.O. Ocenka poperechnogo potoka nanosov na granice pribrezhnoj zony [Evaluation of cross-border flow of sediment to the coastal zone]. Okeanologiya, 2008, vol. 48, no. 1, p. 132–138. (In Russian)

15. Onishhenko Je.L., Kos’jan R.D. O primenenii opticheskogo metoda opredeleniya koncentracii vzveshennyh nanosov v prirodnyh vodoemah [On the application of the optical method for determining the concentration of suspended sediment in natural water bodies]. Vodnye resursy, 1989, Issue 3, p. 94–101. (In Russian)

16. Piper D.J.W., Cochonat P., Morrison M. The sequence of events around the epicenter of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity currents inferred from sidescan sonar. Sedimentology, 1999, vol. 46, p. 79–97.

17. Puig P., Ogston A.S., Mullenbach B.L., Nittrouer C.A., Sternberg R.W. Shelf-to-Canyon sediment-transport processes on the Eel Continental Margin (Northern California). Marine Geology, 2003, vol. 193, p. 129–149.

18. Pyhov N.V., Dachev V.Zh. O vozmozhnosti rascheta koncentracii vzveshennyh nanosov v beregovoj zone vo vremya shtorma [About the possibility of calculating the concentration of suspended sediment in the coastal zone during a storm]. Litodinamika i gidrodinamika kontaktnoj zony okeana. Moscow, Nauka Publ., 1981, p. 92–109. (In Russian)

19. Pyhov N.V., Dachev V.Zh., Kos’jan R.D., Nikolov H.I. Issledovanie polya srednej za shtorm koncentracii vzveshennogo oblomochnogo materiala i ego sostava v beregovoj zone morya [Investigation of the storm-mean field of suspended clastic material concentration and its composition in the coastal zone of the sea] The interaction of the atmosphere, hydrosphere and lithosphere in the coastal zone of the sea. The results of the international experiment «Kamchia 79». Sofija, Publishing House Bolg. AN, 1980, p. 238– 251. (In Russian)

20. Saf’janov G., Menshikov B.L., Peshkov V. Podvodnye kan’ony – ih dinamika i vzaimodejstvie s beregovoj zonoj okeana. [Underwater canyons, their dynamics and interaction with the coastal zone of the ocean]. Krasnodar, Edart-print Publ., 2007, 392 p. (In Russian)

21. Shadrin I.F. Techeniya beregovoj zony besprilivnogo morya [Currents of the coastal zone of non-tidal sea]. Moscow, Nauka Publ., 1972, 128 p. (In Russian)

22. Stont Zh.I., Chubarenko B.V., Gushhin O.A. Izmenchivost’ gidrometeorologicheskih harakteristik dlya poberezh’ya YugoVostochnoi Baltiki [Variability of hydrometeorological characteristics for the coastal zone of the South-Eastern Baltic Sea] // Izvestija RGO [News of the Russian Geographical Society], 2010, vol. 142, Issue 4, p. 48–56. (In Russian)

23. Sviridov N.I., Sivkov V.V., Rudenko M.V., Trimonis Je.S. Geologicheskie sledy pridonnyh techenij v Gotlandskoj vpadine Baltijskogo morya [Geological traces of bottom currents in the Gotland depression of the Baltic Sea]. Okeanologiya, 1997, vol. 37. no. 6, p. 928–935. (In Russian)

24. Talling P., Allin J., Armitage D., Arnott R., Cartigny M., Clare M., Felletti F., Covault J., Girardclos S., Ernst H., Hill P., Hiscott R., Hogg A., Hughes Clarke J., Jobe Z., Malgesini G., Mozzato A., Naruse H., Parkinson S., Peel F., Piper D., Pope E., Postma G., Rowley PJ., Sguazzini A., Stevenson C., Sumner E., Sylvester Z., Watts C., Xu J. Key future directions for research on turbidity currents and their deposits. Journal of Sedimentary Research, 2015, vol. 85, no. 2, p. 153–169.

25. Tylkowski J. The temporal and spatial variability of coastal dune erosion in the Polish Baltic coastal zone. Baltica, 2017, vol. 30(2), p. 97–106.

26. Xu J.P., Noble M.A., Rosenfeld L.K. In-situ measurements of velocity structure within turbidity currents. Geophysical Research Letters, 2004, vol. 31, no. L09311.

27. Zhindarev L.A. Morfolitodinamika raschlenennyh otmelyh poberezhij besprilivnyh morej [Morpholithological dynamics of dissected shallow coasts of non-tidal seas]: Extended Doctoral (Geogr.) Thesis: 11.00.04, Moscow, 1997. (In Russian)

28. Zhmur V.V., Sapov D.A., Nechaev I.D., Ryzhakov M.V., Grigor’eva Ju.V. Intensivnye gravitacionnye techeniya v pridonnom sloe okeana [Intensive gravitational currents in the bottom layer of the ocean]. Izvestija RAN, Serija fizicheskaja [Proceedings of the Academy of Sciences, Physical Series], 2002, vol. 66, no. 12, p. 1721–1726. (In Russian)


Review

For citations:


Kileso A.V., Demidov A.N., Gritsenko V.A. Orographic factor in the generation of along-slope currents in the south-eastern part of the Baltic Sea. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2020;(3):100-107. (In Russ.)

Views: 707


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)