Preview

Lomonosov Geography Journal

Advanced search

Spatio-temporal dynamics of methane content in the Sevastopol Bay and its emission to the atmosphere

Abstract

Concentrations of methane (CH4) in marine water of the Sevastopol Bay were measured during different seasons of 2017–2018 and its emissions from water to the atmosphere were calculated. The CH4 content in water was measured by headspace method using the HP 5890 gas chromatograph. The CH4 surface concentration varied over a wide range, from 2 to 210 nmol L–1, and the CH4 saturation level was 61 to 6814% as compared to the equilibrium values. It was found that CH4 concentration depends on the season. The lowest values were found in June, and the highest in November. The water of Sevastopol Bay appeared to be a source of CH4 for the atmosphere during the whole period of survey averaging from 17 to 112 µmol m–2 a day. The estimated time of dissolved methane emission turnover in the Sevastopol Bay ranges from 12 to 37 days.

About the Authors

T. V. Malakhova
A.O. Kovalevsky Institute of Biology of Southern Seas of the RAS
Russian Federation
Senior Scientific Researcher, PhD. in Biology


L. V. Malakhova
A.O. Kovalevsky Institute of Biology of Southern Seas of the RAS
Russian Federation
Leading Scientific Researcher, PhD. in Biology


A. A. Budnikov
Lomonosov Moscow State University
Russian Federation
Department of Physics, Senior Scientific Researcher, PhD. in Physics and Mathematics


I. N. Ivanova
Lomonosov Moscow State University
Russian Federation
Department of Physics, Senior Scientific Researcher, PhD. in Physics and Mathematics


References

1. Bakker D.C., Bange H.W., Gruber N., Johannessen T., UpstillGoddard R.C., Borges A.V., Santana-Casiano J.M. Air-sea interactions of natural long-lived greenhouse gases (CO2, N2O, CH4) in a changing climate. Ocean-Atmosphere Interactions of Gases and Particles, Eds. Peter L., Johnson M.T., Springer, Berlin Heidelberg, 2014, p. 113–169.

2. Bange H.W., Bartell U.H., Rapsomanikis S., Andreae M.O. Methane in the Baltic and North Seas and a reassessment of themarine emissions of methane. Global Вiogeochemical Cycles, 1994, vol. 8, p. 465–480.

3. Bogard M.J., del Giorgio P.A., Boutet L. et al. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nature Commun, 2014, vol. 5, p. 5350. DOI:10.1038/ncomms6350.

4. Borges A.V., Speeckaert G., Champenois W. et al. Productivity and temperature as drivers of seasonal and spatial variations of dissolved methane in the southern bight of the North Sea. Ecosystems, 2017, p. 1–17.

5. Bousquet P., Ciais P., Miller J.B. et al. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 2006, vol. 443, p. 439–443. DOI:10.1038/nature05132.

6. Bol’shakov A.M., Egorov A.V. Ob ispol’zovanii metodiki fazovo-ravnovesnoj degazacii pri gazometricheskih issledovaniyah [On the use of headspace method in gasometric studies]. Okeanologija, 1987, vol. 27, no. 5, p. 861–862. (In Russian)

7. Ivanov V.A., Ovsjanyj E.I., Repetin L.N. et al. Gidrologogidrohimicheskij rezhim Sevastopol’skoj buhty i ego izmeneniya pod vozdejstviem klimaticheskih i antropogennyh faktorov [Hydrological and hydrochemical regime of the Sevastopol Bay and its changes under the influence of climatic and anthropogenic factors]. Sevastopol’, Marine Hydrophysical Institute of the Ukraine Academy of Sciences, 2006, 90 p. (in Russian)

8. Ivanov V.E. Osobennosti osadkonakopleniya v ust’yah rek jugo-zapadnogo Kryma v pozdnem plejstocene i golocene [Specific features of sedimentation in river mouths of southwestern Crimea in the Late Pleistocene and Holocene] Geologyja i poleznye iskopaemye Mirovogo okeana, 2014, no. 1(35). (In Russian)

9. Keller M.D., Belows W.K., Guillard R.R.L. Dimethyl sulfide production in marine phytoplankton. Biogenic sulfur in the environment. Eds. Saltzman E., Cooper W.J., Washington, DC: American Chemical Society, 1989, p. 167–182.

10. Malakhova L.V., Egorov V.N., Malakhova T.V. et al. Methane in the Sevastopol coastal area, Black Sea. Geo-Marine Letters, 2010, vol. 30, no. 3–4. p. 391–398.

11. Malahova T.V., Egorov V.N., Malahova L.V., Pimenov N.V. Elementy balansa metana v donnyh osadkah Sevastopol’skoj akvatorii [Elements of methane balance in bottom sediments of the Sevastopol water area]. Ekologіchna bezpeka priberezhnoї tashel’fovoї zon ta kompleksne vikoristannja resursіv shel’fu. 2012, vip. 26(1), p. 217–231. (In Russian)

12. Malahova T.V., Kanapackij T.A., Egorov V.N. et al. Mikrobnye processy i genesis strujnyh metanovyh gazovydelenij pribrezhnyh rajonov Krymskogo poluostrova [Microbial processes and the genesis of jet methane gas emissions from the coastal regions of the Crimean Peninsula]. Mikrobiologiya, 2015, vol. 84, no. 6, p. 743– 752. (In Russian)

13. Malahova T.V., Kanapackij T.A., Sidorov I.G., Rusanov I.I., Malahova L.V., Proskurnin V.Ju., Pimenov N.V. Sezonnaya dinamika mikrobnyh processov v donnyh osadkah Sevastopol’skoj morskoj akvatorii [Seasonal dynamics of microbial processes in bottom sediments of the Sevastopol marine area]. Okeanologiya, 2018, vol. 58, no. 4, Application S, p. 21–29. DOI:10.1134/ S0030157418070031. (In Russian)

14. Mishukova G.I., Obzhirov A.I., Mishukov V.F. Metan v presnyh i morskih vodah i ego potoki na granice voda-atmosfera v Dal’nevostochnom regione [Methane in fresh and marine waters and its flows at the air-water interface in the Far Eastern region]. Vladivostok: Dal’nauka Publ., 2007, 112 p. (In Russian)

15. Moiseenko O.G., Orehova N.A. Issledovanie mehanizma mnogoletnej evolyucii cikla ugleroda v ekosisteme Sevastopol’skoj buhty [Investigation of the mechanism of long-term evolution of the carbon cycle in the ecosystem of the Sevastopol Bay]. Morskoj gidrofizicheskij zhurnal, 2011, no. 2, p. 72–84. (In Russian)

16. Repeta D.J., Ferroґn S., Sosa O.A. et al. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nature Geoscience, 2016, p. 884–887. DOI:10.1038/NGEO2837.

17. Pimenov N.V., Egorov V.N., Kanapackij T.A. i dr. Mikrobnye processy krugovorota metana i sul’fatredukciya v osadkah akvatorii Sevastopol’skih buht [Microbial processes of the methane cycle and sulfate reduction in sediments of the Sevastopol bays], Mikrobiologiya, 2013, vol. 82, no. 5, p. 614–624. (In Russian)

18. Sierra A., Jimenez-Lopez D., Ortega T. et al. Spatial and seasonal variability of CH4 in the eastern Gulf of Cadiz (SWIberian Peninsula). Sci. Total Environ, 2017, p. 695–707.

19. Vetrov A.A., Lobus N.V., Drozdova A.N., Beljaev N.A., Romankevich E.A. Metan v vode i donnyh osadkah na treh razrezah v Karskom i Laptevyh moryah [Methane in water and bottom sediments at three sections in the Kara and Laptev seas] Okeanologija, 2018, vol. 58, no. 2, p. 215–221. (In Russian)

20. Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr.: Methods 12, 2014, p. 351–362.

21. Wiesenburg D.A., Guinasso Jr. N.L. Equilibrium solubilities of methane, carbon monoxide and hydrogen in water and seawater. Journal of Chemical Engineering Data, 1979, vol. 24, p. 356–360.


Review

For citations:


Malakhova T.V., Malakhova L.V., Budnikov A.A., Ivanova I.N. Spatio-temporal dynamics of methane content in the Sevastopol Bay and its emission to the atmosphere. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2020;(3):73-80. (In Russ.)

Views: 770


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)