Vestnik Moskovskogo universiteta. Seriya 5, Geografiya

Advanced search

Influence of macroturbulence on the dynamics of river water turbidity

Full Text:


Basing on the generalization of data series obtained by automatic optical turbidity loggers, lowfrequency (20-minutes) changes in suspended solids concentrations in rivers of different types and size are considered. The turbulent nature of these fluctuations, corresponding to the low-frequency zone of the spectrum of ripple velocities of the river flow (macroturbulent fluctuations) is justified. The contribution of macroturbulent fluctuations to the synoptic variability of water turbidity was analyzed on the basis of the TI parameter, which is the ratio of the difference between maximum and minimum turbidity for a short period of time (Ti) (1 hour, with the measurement discreteness of 20 minutes) to the total difference of turbidity for a hydrological event (TГС). The higher values of TI correspond to the greater contribution of macroturbulent turbidity fluctuations to synoptic variability of sediment load caused by precipitation, snowmelt and ice melting. As the basin area increases, the amplitudes of ripple oscillations decrease. Their role in the overall variability of turbidity is maximum for small rivers. The heterogeneity of turbidity structure increases on rivers with the highest frequency of pulsations, i.e. their flow tends to be quasi homogeneous. The heterogeneity leads to the increased contribution of macroturbulent turbidity fluctuations to its synoptic oscillations.

About the Authors

S. R. Chalov
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Land Hydrology, Associate Professor, PhD in Geography

A. S. Tsyplenkov
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Laboratory of Soil Erosion and Fluvial Processes, Junior Scientific Researcher, PhD in Geography


1. Alexeevsky N.I. Gidrofizika [Hydrophysics]. Moscow, Akademiia Publ., 2006, 176 p. (In Russian)

2. Alexeevsky N.I., Belozerova E.V., Kasimov N.S., Chalov S.R. Prostranstvennaya izmenchivost kharakteristik stoka vzveshennykh nanosov v basseine Selengi v period dozhdevykh pavodkov [Spatial variability of sediment runoff parameters in the Selenga River basin during rainfall floods]. Vestn. Mosk. un-ta, Ser. 5, Geogr., 2013, no. 3, p. 60–65. (In Russian)

3. Belozerova E.V., Chalov S.R. Opredelenie mutnosti rechnykh vod opticheskimi metodami [Evaluation of river water turbidity using the optic methods] Vestn. Mosk. un-ta, Ser. 5, Geogr., 2013, no. 5, p. 39–45. (In Russian).

4. Buffin-Bélanger T., Roy A.G., Kirkbride A.D. On large-scale flow structures in a gravel-bed river. Geomorphology, 2000, vol. 32, no. 3–4, p. 417–435. DOI:10.1016/S0169-555X(99)00106-3.

5. Carling P.A., Orr H.G. Morphology of riffle-pool sequences in the River Severn, England. Earth Surface Processes and Landforms, 2000. DOI:10.1002/(SICI)1096-9837 (200004)25:4< 369::AID-ESP60>3.0.CO;2-M.

6. Erozionno-ruslovye sistemy [Erosion–channel systems]. Eds. R.S. Chalov, A.Yu. Sidorchuk, V.N. Golosov, Moscow, INFRA-M Publ., 2017, 702 p. (In Russian)

7. Chalov S.R., Tsyplenkov A.S. Stok nanosov malyh rek raionov sovremennogo vulkanizma (r. Suhaya Elizovskaya, Kamchatka) [Sediment discharge of small rivers in the areas of active volcanism (River Sukhaya Elizovskaya, Kamchatka)]. Geomorphologiya RAS, 2017, (1), p. 104–116. DOI:10.15356/0435-4281-2017-1-104-116. (In Russian)

8. Chalov S.R., Jarsjö J., Kasimov N.S., Romanchenko A.O., Pietroс J., Thorslund J., Promakhova E.V. Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environmental Earth Sciences, 2014, vol. 73, no. 2, p. 663– 680. DOI:10.1007/s12665-014-3106-z.

9. Chalov S.R., Tsyplenkov A.S., Pietron J., Chalova A.S., Shkolnyi D.I., Jarsjö J., Maerker M. Sediment transport in headwaters of a volcanic catchment – Kamchatka Peninsula case study. Frontiers of Earth Science, 2017, vol. 11, no. 3, p. 565–578. DOI:10.1007/s11707-016-0632-x.

10. Chen S.C., Lai Y.C. Sediment delivery and budgets in reservoir watersheds. Sediment Budgets, 2005, vol. 2, p. 324–332.

11. Clifford N.J., Richards K.S., Brown R.A., Lane S.N. Scales of Variation of Suspended Sediment Concentration and Turbidity in a Glacial Meltwater Stream. Geografiska Annaler: Series A, Physical Geography, 1995, vol. 77, no. 1–2, p. 45–65. DOI:10.1080/ 04353676.1995.11880428.

12. Dugan H.A., Lamoureux S.F., Lafreničre M.J., Lewis T. Hydrological and sediment yield response to summer rainfall in a small high Arctic watershed. Hydrological Processes, 2009, vol. 23, no. 10, p. 1514–1526. DOI:10.1002/hyp.7285.

13. Gippel C.J. Potential of turbidity monitoring for measuring the transport of suspended solids in streams. Hydrological Processes, 1995, vol. 9, no. 1, p. 83–97. DOI:10.1002/hyp. 3360090108.

14. Göransson G., Larson M., Bendz D. Variation in turbidity with precipitation and flow in a regulated river system &amp;amp;ndash; river Göta Älv, SW Sweden. Hydrology and Earth System Sciences, 2013, vol. 17, no. 7, p. 2529–2542. DOI: 10.5194/hess-17-2529-2013.

15. Gray J.R., Gartner J.W. Technological advances in suspendedsediment surrogate monitoring. Water Resources Research, 2009, vol. 45, no. 4. DOI:10.1029/2008WR007063.

16. Grishanin K.V. Dinamika ruslovykh potokov [Channel Dynamics]. Leningrad, Gidrometeoizdat Publ., 1979, 311 p. (In Russian).

17. Grishanin K.V. Gidravlicheskoe soprotivlenie estestvennykh rusel [Hydraulic resistance of natural channels]. Leningrad, Gidrometeoizdat Publ., 1992, 183 p. (In Russian)

18. Gusarov A.V. Tendentsii izmeneniya erozii i stoka vzveshennyh nanosov na Zemle vo vtoroj polovine XX stoletiya [The tendencies of erosion and suspended sediment yield changes on the Earth during the second half of 20th century]. Geomorphologiya RAS, 2004, (2), p. 11–22. DOI:10.15356/04354281-2004-2-11-22. (In Russian)

19. Hamshaw S.D., Dewoolkar M.M., Schroth A.W., Wemple B.C., Rizzo D.M. A New Machine-Learning Approach for Classifying Hysteresis in Suspended-Sediment Discharge Relationships Using High-Frequency Monitoring Data. Water Resources Research, 2018, p. 1–19. DOI:10.1029/2017WR022238.

20. Horowitz A.J., Rinella F.A., Lamothe P., Miller T.L., Edwards T.K., Roche R.L., Rickert D.A. Variations in suspended sediment and associated trace element concentrations in selected riverine cross sections. Environmental Science & Technology, 1990, vol. 24, no. 9, p. 1313–1320. DOI:10.1021/es00079a003

21. . Teoriia sluchainykh protsessov v gidrologii [Theory of stochastic proc Hristoforov A.V. esses in hydrology]. Moscow, MGU Publ., 1994, 139 p. (In Russian)

22. Kirkbride A.D., Ferguson R. Turbulent flow structure in a gravel-bed river: Markov chain analysis of the fluctuating velocity profile. Earth Surface Processes and Landforms, 1995, vol. 20, no. 8, p. 721–733. DOI:10.1002/esp.3290200804.

23. Kondratev N.E., Popov I.V., Snishchenko B.F. Osnovy gidromorfologicheskoi teorii ruslovogo protsessa [Basics of hydromorphological theory of the fluvial process]. Leningrad, Gidrometeoizdat Publ., 1982, 270 p. (In Russian)

24. Lewis J. Turbidity-Controlled Suspended Sediment Sampling for Runoff-Event Load Estimation. Water Resources Research, 1996, vol. 32, no. 7, p. 2299–2310. DOI:10.1029/96WR00991.

25. Lewis T., Braun C., Hardy D.R., Francus P., Bradley R.S. An Extreme Sediment Transfer Event in a Canadian High Arctic Stream. Arctic, Antarctic, and Alpine Research, 2005, vol. 37, no. 4, p. 477– 482. DOI: 10.1657/1523-0430(2005)037[0477:AESTEI]2.0.CO;2.

26. Lloyd C.E.M., Freer J.E., Johnes P.J., Collins A.L. Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments. Science of the Total Environment, 2016, vol. 543, p. 388–404. DOI:10.1016/j.scitotenv. 2015.11.028.

27. Lopatin G.V. Nanosy rek SSSR (Formirovanie i perenos) [Sediments of the rivers of the USSR (Formation and transport)] Moscow, Geografgiz Publ., 1952, 366 p. (In Russian)

28. Matthes G.H. Macroturbulence in natural stream flow. Transactions, American Geophysical Union, 1947, vol. 28, no. 2, p. 255. DOI:10.1029/TR028i002p00255.

29. Poliakov B.V. Gidrologicheskii analiz i raschety: Uchebnoe posobie [Hydrological analysis and calculations: training manual]. Leningrad, Gidrometeoizdat Publ., 1946. (In Russian)

30. Rasmussen P.P., Gray J.R., Glysson G.D., Ziegler A.C. Guidelines and procedures for computing time-series suspendedsediment concentrations and loads from in-stream turbidity-sensor and streamflow data: Techniques and Methods 3–C4. Book 3, Applications of Hydraulics Section C, Sediment and Erosion Techniques, 2009, p. 53.

31. Rodda H.J.E., Little M.A. Understanding Mathematical and Statistical Techniques in Hydrology. Chichester, UK: John Wiley & Sons, Ltd, 2015, 302 p. DOI:10.1002/9781119077985.

32. Sidorchuk A.Y. High-frequency variability of aggregate transport under water erosion of well-structured soils. Eurasian Soil Science, 2009, vol. 42, no. 5, p. 543–552. DOI:10.1134/ S106422930905010X.

33. Sloto R.A., Crouse M.Y. Hysep: A computer program for streamflow hydrograph separation and analysis, U.S. Geological Survey, Water-Resources Investigations Report 96-4040, Lemoyne, Pennsylvania, 1996, 46 p.

34. Stott T.A., Grove J.R. Short-term discharge and suspended sediment fluctuations in the proglacial Skeldal River, north-east Greenland. Hydrological Processes, 2001, vol. 15, no. 3, p. 407– 423. DOI:10.1002/hyp.156.

35. Stott T.A., Mount N.J. The impact of rainstorms on shortterm spatial and temporal patterns of suspended sediment transfer over a proglacial zone, Ecrins National Park, France. Effects of River Sediments and Channel Processes on Social, Economic and Environmental Safety, Proceedings of the Tenth International Symposium on River Sedimentation, Moscow, 2007a, p. 259–266.

36. Stott T.A., Mount N.J. Alpine proglacial suspended sediment dynamics in warm and cool ablation seasons: Implications for global warming. Journal of Hydrology, 2007b, vol. 332, no. 3–4, p. 259– 270. DOI:10.1016/j.jhydrol.2006.07.001.

37. Sutula M., Bianchi T.S., McKee B. Effect of seasonal sediment storage in the lower Mississippi River on the flux of reactive particulate phosphorus to the Gulf of Mexico. Limnology and Oceanography, 2004, vol. 49, no. 6, p. 2223–2235. DOI:10.4319/ lo.2004.49.6.2223.

38. Syvitski J.P.M. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science, 2005, vol. 308, Issue 5720, p. 376–380. DOI:10.1126/science.1109454.

39. Velikanov M.A. Dinamika ruslovykh potokov [Channel dynamics]. Moscow, Gostekhizdat Publ., 1954, 322 p. (In Russian)

40. Vercruysse K., Grabowski R.C., Rickson R.J. Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth-Science Reviews, 2017, vol. 166, p. 38– 52. DOI:10.1016/j.earscirev.2016.12.016.

41. Walling D.E. Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resources Research, 1977, vol. 13, no. 3, p. 531–538. DOI:10.1029/WR013i003p00531.

42. Walling D.E., Fang D. Recent trends in the suspended sediment loads of the world’s rivers. Global and Planetary Change, 2003, vol. 39, no. 1–2, p. 111–126. DOI:10.1016/S09218181(03)00020-1.


For citations:

Chalov S.R., Tsyplenkov A.S. Influence of macroturbulence on the dynamics of river water turbidity. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2020;(3):34-46. (In Russ.)

Views: 624

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 0579-9414 (Print)