Preview

Вестник Московского университета. Серия 5. География

Расширенный поиск

Роль крупномасштабной турбулентности в изменении мутности речных вод

Полный текст:

Аннотация

На основе обобщения рядов, полученных автоматическими регистраторами оптической мутности воды, рассмотрены изменения содержания взвешенных частиц с периодом 20 минут в реках разного типа и размера. Обосновывается их турбулентный характер, соответствующий низкочастотной области спектра пульсаций скорости речного потока, называемой в литературе крупномасштабной турбулентностью или макротурбулентными изменениями. Анализировался вклад этих отклонений, называемых далее в статье макротурбулентными, в синоптическую изменчивость мутности воды на основе параметра TI, представляющего собой отношение разницы между максимальной и минимальной мутностью за короткий период времени (Ti) (1 час с дискретностью измерений 20 минут) к суммарной разнице мутности за гидрологическое событие (TГС). Большим значениям TI соответствует больший вклад изменений мутности, связанных с крупномасштабной турбулентностью, в синоптическую изменчивость стока наносов, обусловленную выпадением осадков, снего- и ледотаянием. С увеличением площадей бассейнов амплитуды пульсаций уменьшаются. Их роль в общей изменчивости мутности максимальна на реках малого размера. На реках, где частота пульсаций наибольшая, т.е. поток стремится к квазиоднородному состоянию, усиливается неоднородность структуры мутности, проявляющаяся в увеличении вклада 20-минутных изменений мутности в ее синоптические колебания.

Об авторах

С. Р. Чалов
Московский государственный университет имени М.В. Ломоносова
Россия
географический факультет, кафедра гидрологии суши, доцент, канд. геогр. н.


А. С. Цыпленков
Московский государственный университет имени М.В. Ломоносова
Россия
географический факультет, НИЛ эрозии почв и русловых процессов, мл. науч. с., канд. геогр. н.


Список литературы

1. Алексеевский Н.И. Гидрофизика. М.: Академия, 2006. 176 с.

2. Алексеевский Н.И., Белозерова Е.В., Касимов Н.С., Чалов С.Р. Пространственная изменчивость характеристик стока взвешенных наносов в бассейне Селенги в период дождевых паводков // Вестн. Моск. ун-та. Сер. 5. Геогр. 2013. № 3. – С. 60–65.

3. Белозерова Е.В., Чалов С.Р. Определение мутности речных вод оптическими методами // Вестн. Моск. ун-та. Сер. 5. Геогр. 2013. № 5. С. 39–45.

4. Великанов М.А. Динамика русловых потоков. М.: Гостехиздат, 1954. 322 с.

5. Гришанин К.В. Динамика русловых потоков. Л.: Гидрометеоиздат, 1979. 311 с.

6. Гришанин К.В. Гидравлическое сопротивление естественных русел. М.: Гидрометеоиздат, 1992. 183 с.

7. Гусаров А.В. Тенденции изменения эрозии и стока взвешенных наносов на земле во второй половине XX столетия (посвящается 200-летию Казанского государственного университета) // Геоморфология. 2004. Т. 2. С. 11–22.

8. Кондратьев Н.Е., Попов И.В., Снищенко Б.Ф. Основы гидроморфологической теории руслового процесса. Л.: Гидрометеоиздат, 1982. 270 с.

9. Лопатин Г.В. Наносы рек СССР (Образование и перенос) М.: Географгиз, 1952. 366 с.

10. Поляков Б.В. Гидрологический анализ и расчеты: Учебное пособие. Л.: Гидрометеоиздат, 1946.

11. Христофоров А.В. Теория случайных процессов в гидрологии. М.: МГУ, 1994. 139 с.

12. Чалов С.Р., Цыпленков А.С. Сток наносов малых рек районов современного вулканизма (р. Сухая Елизовская, Камчатка) // Геоморфология. 2017. Т. 6. № 1. С. 104–116. DOI:10.15356/ 0435-4281-2017-1-104-116.

13. Эрозионно-русловые системы / ред. Чалов Р.С., Голосов В.Н., Сидорчук А.Ю. М.: ИНФРА-М, 2017. 702 с.

14. Buffin-Bélanger T., Roy A.G., Kirkbride A.D. On large-scale flow structures in a gravel-bed river. Geomorphology, 2000, vol. 32, no. 3–4, p. 417–435. DOI:10.1016/S0169-555X(99) 00106-3.

15. Carling P.A., Orr H.G. Morphology of riffle-pool sequences in the River Severn, England. Earth Surface Processes and Landforms, 2000. DOI:10.1002/(SICI)1096-9837(200004)25:4 <369::AID-ESP60>3.0.CO;2-M.

16. Carslaw D.C., Ropkins K. Openair – An R package for air quality data analysis. Environmental Modelling & Software, 2012, vol. 27–28, p. 52–61. DOI:10.1016/j.envsoft.2011.09.008.

17. Chalov S.R., Jarsjö J., Kasimov N.S., Romanchenko A.O., Pietroс J., Thorslund J., Promakhova E.V. Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environmental Earth Sciences, 2014, vol. 73, no. 2, p. 663– 680. DOI:10.1007/s12665-014-3106-z.

18. Chalov S.R., Tsyplenkov A.S., Pietron J., Chalova A.S., Shkolnyi D.I., Jarsjц J., Maerker M. Sediment transport in headwaters of a volcanic catchment – Kamchatka Peninsula case study. Frontiers of Earth Science, 2017, vol. 11, no. 3, p. 565–578. DOI:10.1007/s11707-016-0632-x.

19. Chen S.C., Lai Y.C. Sediment delivery and budgets in reservoir watersheds. Sediment Budgets, 2005, vol. 2, p. 324–332.

20. Clifford N.J., Richards K.S., Brown R.A., Lane S.N. Scales of Variation of Suspended Sediment Concentration and Turbidity in a Glacial Meltwater Stream. Geografiska Annaler: Series A, Physical Geography, 1995, vol. 77, no. 1–2, p. 45–65. DOI: 10.1080/04353676.1995.11880428.

21. Dugan H.A., Lamoureux S.F., Lafreničre M.J., Lewis T. Hydrological and sediment yield response to summer rainfall in a small high Arctic watershed. Hydrological Processes, 2009, vol. 23, no. 10, p. 1514–1526. DOI:10.1002/hyp.7285.

22. Gippel C.J. Potential of turbidity monitoring for measuring the transport of suspended solids in streams. Hydrological Processes, 1995, vol. 9, no. 1, p. 83–97. DOI:10.1002/hyp.3360090108.

23. Göransson G., Larson M., Bendz D. Variation in turbidity with precipitation and flow in a regulated river system &amp;amp;ndash; river Göta Älv, SW Sweden. Hydrology and Earth System Sciences, 2013, vol. 17, no. 7, p. 2529–2542. DOI: 10.5194/hess-17-2529-2013.

24. Gray J.R., Gartner J.W. Technological advances in suspendedsediment surrogate monitoring. Water Resources Research, 2009, vol. 45, no. 4. DOI:10.1029/2008WR007063.

25. Hamshaw S.D., Dewoolkar M.M., Schroth A.W., Wemple B.C., Rizzo D.M. A New Machine-Learning Approach for Classifying Hysteresis in Suspended-Sediment Discharge Relationships Using High-Frequency Monitoring Data. Water Resources Research, 2018, p. 1–19. DOI:10.1029/2017WR022238.

26. Horowitz A.J., Rinella F.A., Lamothe P., Miller T.L., Edwards T.K., Roche R.L., Rickert D.A. Variations in suspended sediment and associated trace element concentrations in selected riverine cross sections. Environmental Science & Technology, 1990, vol. 24, no. 9, p. 1313–1320. DOI:10.1021/es00079a003.

27. Kirkbride A.D., Ferguson R. Turbulent flow structure in a gravel-bed river: Markov chain analysis of the fluctuating velocity profile. Earth Surface Processes and Landforms, 1995, vol. 20, no. 8, p. 721–733. DOI:10.1002/esp.3290200804.

28. Lewis J. Turbidity-Controlled Suspended Sediment Sampling for Runoff-Event Load Estimation. Water Resources Research, 1996, vol. 32, no. 7, p. 2299–2310. DOI:10.1029/96WR00991.

29. Lewis T., Braun C., Hardy D.R., Francus P., Bradley R.S. An Extreme Sediment Transfer Event in a Canadian High Arctic Stream. Arctic, Antarctic, and Alpine Research, 2005, vol. 37, no. 4, p. 477– 482. DOI: 10.1657/1523-0430(2005)037[0477:AESTEI]2.0.CO;2.

30. Lloyd C.E.M., Freer J.E., Johnes P.J., Collins A.L. Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments. Science of the Total Environment, 2016, vol. 543, p. 388–404. DOI:10.1016/j.scitotenv.2015.11.028.

31. Matthes G.H. Macroturbulence in natural stream flow. Transactions, American Geophysical Union, 1947, vol. 28, no. 2, p. 255. DOI:10.1029/TR028i002p00255.

32. Rasmussen P.P., Gray J.R., Glysson G.D., Ziegler A.C. Guidelines and procedures for computing time-series suspendedsediment concentrations and loads from in-stream turbidity-sensor and streamflow data: Techniques and Methods 3–C4. Book 3, Applications of Hydraulics Section C, Sediment and Erosion Techniques, 2009, p. 53.

33. Robert A. River Processes: An Introduction to Fluvial Dynamics, Arnold, 2003, 214 p.

34. Rodda H.J.E., Little M.A. Understanding Mathematical and Statistical Techniques in Hydrology. Chichester, UK: John Wiley & Sons, Ltd, 2015, 302 p. DOI: 10.1002/9781119077985.

35. Sidorchuk A.Y. High-frequency variability of aggregate transport under water erosion of well-structured soils. Eurasian Soil Science, 2009, vol. 42, no. 5, p. 543–552. DOI:10.1134/ S106422930905010X.

36. Sloto R.A., Crouse M.Y. Hysep: A computer program for streamflow hydrograph separation and analysis, U.S. Geological Survey, Water-Resources Investigations Report 96-4040, Lemoyne, Pennsylvania, 1996, 46 p. https://water.usgs.gov/software/HYSEP/code/doc/hysep.pdf

37. Stott T.A., Grove J.R. Short-term discharge and suspended sediment fluctuations in the proglacial Skeldal River, north-east Greenland. Hydrological Processes, 2001, vol. 15, no. 3, p. 407– 423. DOI:10.1002/hyp.156.

38. Stott T.A., Mount N.J. Alpine proglacial suspended sediment dynamics in warm and cool ablation seasons: Implications for global warming. Journal of Hydrology, 2007b, vol. 332, no. 3–4, p. 259– 270. DOI:10.1016/j.jhydrol.2006.07.001.

39. Stott T.A., Mount N.J. The impact of rainstorms on short-term spatial and temporal patterns of suspended sediment transfer over a proglacial zone, Ecrins National Park, France. Effects of River Sediments and Channel Processes on Social, Economic and Environmental Safety, Proceedings of the Tenth International Symposium on River Sedimentation, Moscow, 2007a, p. 259–266.

40. Sutula M., Bianchi T.S., McKee B. Effect of seasonal sediment storage in the lower Mississippi River on the flux of reactive particulate phosphorus to the Gulf of Mexico. Limnology and Oceanography, 2004, vol. 49, no. 6, p. 2223–2235. DOI:10.4319/lo.2004.49.6.2223.

41. Syvitski J.P.M. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science, 2005, vol. 308, Issue 5720, p. 376–380. DOI:10.1126/science.1109454.

42. Vercruysse K., Grabowski R.C., Rickson R.J. Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth-Science Reviews, 2017, vol. 166, p. 38– 52. DOI:10.1016/j.earscirev.2016.12.016.

43. Walling D.E. Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resources Research, 1977, vol. 13, no. 3, p. 531–538. DOI: 10.1029/WR013i003p00531.

44. Walling D.E., Fang D. Recent trends in the suspended sediment loads of the world’s rivers. Global and Planetary Change, 2003, vol. 39., no. 1–2, p. 111–126. DOI:10.1016/S09218181(03)00020-1.


Для цитирования:


Чалов С.Р., Цыпленков А.С. Роль крупномасштабной турбулентности в изменении мутности речных вод. Вестник Московского университета. Серия 5. География. 2020;(3):34-46.

For citation:


Chalov S.R., Tsyplenkov A.S. Influence of macroturbulence on the dynamics of river water turbidity. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2020;(3):34-46. (In Russ.)

Просмотров: 33


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)