Preview

Lomonosov Geography Journal

Advanced search

Regional climate modeling for geographical analysis

Abstract

The actual state and the progress of climate modelling allow considering this technique as full alternative to traditional data sources about environment, ecosystems, their dynamics, etc. The rash development of meteorology and climatology, computational technologies and understanding of physical processes in soil and vegetation cover made it possible to include the detailed description of mechanisms of heat, moisture and greenhouse gases exchange, as well as interactions between the atmospheric boundary layer, surface, soil and plant communities into modern climate models. The article deals with the problem of obtaining highly-detailed data on meteorological parameters, as well as heat and moisture exchange with the atmosphere. We consider the methodological bases of climate modeling, giving the examples of applications of the results for solution of a wide range of eco-geographical tasks.

About the Authors

A. V. Kislov
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Meteorology and Climatology, Head of Department, Professor, D.Sc. in Geography


P. A. Toropov
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Meteorology and Climatology, Associate Professor, PhD. in Geography


V. S. Platonov
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Meteorology and Climatology, Senior Scientific Researcher, PhD. in Geography


A. V. Oltchev
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Meteorology and Climatology, Leading Scientific Researcher, D.Sc. in Biology


M. I. Varentsov
Lomonosov Moscow State University, Research Computing Center
Russian Federation
Junior Research Scientist, PhD. in Geography


References

1. Bartalis Z., Naeimi V., Hasenauer S., Wagner W. ASCAT Soil Moisture Product Handbook // ASCAT Soil Moisture Report Series. 2008. № 15. Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Austria.

2. Bornstein R.D. Observations of the Urban Heat Island Effect in New York City // J. Appl. Meteorol. 1968. Т. 7. № 4. P. 575–582.

3. Bromwich D., Wilson A., Bai L. et al. The Arctic System Reanalysis Version 2 // Bull. Amer. Meteor. Soc. 2018. doi:10.1175/BAMS-D-16-0215.1.

4. Bromwich D.H., Wilson A.B., Bai L.-S. et al. A comparison of the regional Arctic System Reanalysis and the global ERA-Interim Reanalysis for the Arctic // Quarterly Journal of Royal Meteorological Society. 2016. V. 142. P. 644–658.

5. Champeaux J.L., Masson V., Chauvin F. ECOCLIMAP: a global database of land surface parameters at 1 km resolution // Meteorological Applications. 2005. V. 12. № 1. P. 29–32.

6. Dee D.P., Uppala S., Simmons A. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system // Quarterly Journal of the Royal Meteorological Society. 2011. V. 553. P. 553–597.

7. Defourny P., Vancutsem C., Bicheron P. et al. Globcover: a 300 m global land cover product for 2005 using ENVISAT MERIS time series // Proceedings of the ISPRS Commission VII mid-term Symposium: Remote Sensing: from pixels to processes. 2006.

8. Gorlach I.A., Kislov A.V., Alexeeva L.I. Opyt issledovanija vertikal’noj struktury gorodskogo ostrova tepla na osnove sputnikovyh dannyh [Study of the vertical structure of urban heat island based on the remote sensing data] // Issledovanija Zemli iz Kosmosa. 2017. № 4. P. 36–46. (In Russian)

9. Huneeus N., Schulz M., Balkanski Y. et al. Global dust model intercomparison in AeroCom phase I //Atmospheric Chemistry and Physics. 2011. Т. 11. № 15. P. 7781.

10. Inness A., Baier F., Benedetti A. et al. The MACC reanalysis: an 8yr data set of atmospheric composition // Atmospheric chemistry and physics. 2013. V. 13. P. 4073–4109.

11. Jekologo-geograficheskie posledstvija global’nogo poteplenija klimata HHI veka na Vostochno-Evropejskoj ravnine i v Zapadnoj Sibiri [Ecological and geographical consequences of the global climate warming over the East European Plain and Western Siberia] / Ed. by N.S. Kasimov and A.V. Kislov. М.: Makspress, 2011. 496 p. (In Russian)

12. Kadygrov E.N., Kuznetsova I.N., Golitsyn G.S. Ostrov tepla v pogranichnom sloe atmosfery nad bol’shim gorodom: novye rezul’taty na osnove distancionnyh dannyh [The heat island in the atmospheric boundary layer over a large city: new results based on remote sensing data] // Doklady Akademii Nauk. 2002. V. 385. № 4. P. 541–548. (In Russian)

13. Kalinin N.A., Kislov A.V., Babina E.D., Vetrov A.L. Ocenka kachestva vosproizvedenija model’ju MM5 temperatury vozduha v ijule na Urale [Estimation of the quality of MM5 model reproduction of July air temperature in the Urals] // Meteorologia i Gidrologia. 2010. № 10. P. 15–22. (In Russian)

14. Kalnay E., Kanamitsu M., Kistler R. et al. The NCEP/NCAR 40-year reanalysis project // Bulletin of the American Meteorological Society. 1996. V. 77. № 3. P. 437–471.

15. Kislov A.V., Rivin G.S., Platonov V.S. et al. Mezomasshtabnoye modelirovaniye ekstremal’nykh vetrov nad Okhotskim morem i ostrovom Sakhalin [Mesoscale atmospheric modeling of extreme winds over the Sea of Okhotsk and the Sakhalin Island] // Izvestiya Rossiyskoy Akademii Nauk. Fizika Atmosfery i Okeana, 2018. T. 54. № 4. P. 381–385. (In Russian)

16. Kislov A.V., Surkova G.V. O modeli regional’nogo klimata [About the regional climate model] // Meteorologia I Gidrologia. 1995. № 5. P. 23–31. (In Russian)

17. Kislov A.V., Varentsov M.I., Gorlach I.A., Alexeeva L.I. «Ostrov tepla» Moskovskoj aglomeracii i urbanisticheskoe usilenie global’nogo poteplenija [«Heat island» of the Moscow agglomeration and the urban amplification of global warming] // Vestnik Moskovskogo Unviersiteta, Seriya Geografiya. 2017. № 4. P. 12–19. (In Russian)

18. Klimat Moskvy v usloviyakh global’nogo potepleniya. [The Moscow climate under the global warming condition] A.V. Kislov (ed.). Izdatel’stvo Moskovskogo universiteta. 2017. 288 p. (In Russian)

19. Kuzmina E.V., Oltchev A.V., Rozinkina I.A. et al. Primenenie mezomasshtabnoj modeli COSMO-SLM dlja ocenki vlijanija izmenenija lesistosti evropejskoj chasti Rossii na regional’nye meteorologicheskie uslovija [Application of the COSMO-CLM mesoscale model for the assessment of the impact of forest cover changes on the regional meteorological conditions] // Meteorologia i Gidrologia. 2017. № 9. P.48–58. (In Russian)

20. Kuznetsova I.N., Nakhaev M.I. Sezonnye osobennosti termicheskoj struktury nizhnih sloev atmosfery v moskovskom megapolise po dannym mikrovolnovyh izmerenij temperatury [Seasonal features of thermal structure of surface atmospheric layers in the Moscow megapolis based on microwave temperature measurements data] // 80 let Gidrometcentru Rossii. Moscow: TRIADA Ltd, 2010. P. 389–400. (In Russian)

21. Landsberg G.E. Klimat goroda [Urban climate]. Leningrad: Gidrometeoizdat, 1983. 246 p. (In Russian)

22. Lokoshchenko M.A. Urban Heat Island and Urban Dry Island in Moscow and Their Centennial Changes // J. Appl. Meteorol. Climatol. 2017. Т. 56. № 10. P. 2729–2745.

23. Lokoshchenko M.A., Korneva I.A., Kochin A.V. et al. O vysotnoj protjazhennosti gorodskogo «ostrova tepla» nad Moskvoj [Vertical extension of the «urban heat island» over Moscow] // Doklady Akademii Nauk. 2016. V. 466. № 2. P. 213–217. (In Russian)

24. Mesinger F., DiMego G., Kalnay E. et al. North American Regional Reanalysis // Bulletin of American Meteorological Society. 2006. V. 3. P. 343–360.

25. Oltchev A.V., Rozinkina I.A., Kuzmina E.V. et al. Ocenka vlijanija izmenenija lesistosti central’nogo regiona Vostochno-Evropejskoj ravniny na letnie pogodnye uslovija [Assessment of the impact of forest cover changes in the central region of the East European Plain on summer weather conditions] // Fundamental’naja i Prikladnaja Klimatologija. 2017. Т. 4. С. 79–101. (In Russian)

26. Rienecker M.M., Suarez M.J., Gelaro R. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications // Journal of Climate. 2011. V. 24. № 14. P. 3624–3648.

27. Rivin G.S., Rozinkina I.A., Vilfand R.M. et al. Sistema COSMORu negidrostaticheskogo mezomasshtabnogo kratkosrochnogo prognoza pogody Gidrometcentra Rossii: vtoroj jetap realizacii i razvitija [The COSMO-Ru system of non-hydrostatic mesoscale short-term weather forecast in the Hydrometcenter of Russia: the second stage of implementation and development] // Meteorologia i Gidrologia. 2015. № 6. P. 58–70. (In Russian)

28. Varentsov M.I., Samsonov T.Ye., Kislov A.V., Konstantinov P.I. Vosproizvedenie ostrova tepla Moskovskoj aglomeracii v ramkah regional’noj klimaticheskoj modeli COSMO-CLM [Representation of he urban heat island of Moscow agglomeration within the COSMO-CLM regional climate model] // Vestnik Moskovskogo Unviersiteta, Seriya Geografiya. 2017. № 6. P. 25–37. (In Russian)

29. Warner T. Numerical weather and climate prediction. Cambridge University Press, 2011. 526 p.

30. Wedi N. Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea? // Phil. Trans. Roy. Soc. A. 2014. V. 372.

31. Wilby R.L., Wigley T.M.L. Downscaling general circulation model output: a review of methods and limitations // Progress in Physical Geography. 1997. V. 21. P. 530–548.

32. Wouters H., Demuzere M., Blahak U. et al. Efficient urban canopy parametrization for atmospheric modelling: description and application with the COSMO-CLM model for a Belgian Summer // Geosci. Model Dev. 2016. V. 9. P. 3027–3054.


Review

For citations:


Kislov A.V., Toropov P.A., Platonov V.S., Oltchev A.V., Varentsov M.I. Regional climate modeling for geographical analysis. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2019;(5):3-12. (In Russ.)

Views: 1076


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)