Lateral differentiation of metal fractions in loamy soil catenas of the central part of Western Siberia plain
Abstract
Lateral fractionation of Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr and Zn compounds (recovered by acetate ammonium buffer (AAc), ЛЛс+1% EDTA and 1n HNO3) in soils of loamy catenas was studied within three small catchments in the southern taiga, subboreal forests, and forest-steppe of Western Siberia. The total concentrations of Mn (mean value and standard deviation in the A-horizon of soils within the three catchments is 2442±3359 mg/kg), Sr (179±71), Co (20±10), Cu (42±18), Ni (48±35) and Pb (41±51) correspond to their background levels in soils of Western Siberia, while those of Fe (3,7±0,9%), Cr (170±34 mg/kg) and Zn (154±141 mg/kg) are higher because of their higher concentrations in parent material. The average content of exchangeable compounds of Fe, Cu, Pb, Co, Zn, Cr, Mn, Ni and Sr in top-soil and sub-soil horizons increases from taiga Luvisols and Gleysols to Phaeozems, Planosols and Chernozems of subboreal forests and forest-steppe. In the A-horizon of this series the content of complexed Cu, Co, Ni, Pb and Fe increases due to higher concentration of organic matter and that of Mn decreases, because it is intensively accumulated by tree vegetation. Specific zonal features of sorbed Co, Cr, Cu, Fe, Ni, Pb, Sr, and Zn were not found.
The mobility of Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn in O-layer decreases 2 to 3 times from Luvisols to Gleysols withinn taiga catenas in proportion to the amount of complexed compounds. In subboreal forest catenas with Phaeozems, it decreases with depth for Ni (40 to 15%), Pb (45-40), Cu (2415), Co (15-11), and Fe (5-2); slightly varies for Mn and Zn (60 to 50% and 10 to 9%, respectively) and increases for Sr (10 to 14%) and Cr (5 to 7%). In Planosols, these tendencies are valid for Co, Cu, Fe, and Ni. In forest-steppe catenae with Chernozems, the mobility decreases with depth for Co, Mn (95-56%), Ni and Pb (60-25%) and increases for Sr (37-46%), varying slightly for Cu (40-50), Zn (10-13), Fe (7-8), and Cr (4). In Planosols, these trends are valid for Co, Mn, Ni, Pb, and Cr. The total frequency of lateral fractionation coefficient values corresponding to contrast accumulation and contrast scattering of elements in subordinate landscapes decreases from 35±14% in the taiga catchment to 15±4% and 13±7% in the subbpreal forest and forest-steppe catchments respectively.
Keywords
About the Authors
I. N. SemenkovRussian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Research Scientist, PhD. in Geography
N. S. Kasimov
Russian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Head of the Department, Professor, full-member of the Russian Academy of Science, D.Sc. in Geography
E. V. Terskaya
Russian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Research Scientist
References
1. Ajvazjan A.D. Geohimicheskie osobennosti flory landshaftov jugo-zapadnogo Altaja [Geochemical features of the flora in the landscapes of the south-western Altai Mountains]. MGU. Moscow. 1974. 155 p. (In Russian)
2. Avessalomova I.A. Katenarnaja geohimicheskaja organizacija taezhnyh landshaftov Vostochno-Evropejskoj ravniny [Catenary geochemical organization of taiga landscapes in the East European Plain], Geohimija landshaftov i geografija pochv. 100 let so dnja rozhdenija M.A. Glazovskoj. APR, Moscow, 2012. P. 97-117. (In Russian)
3. Biryukova O.N., Orlov D.S. Content and composition of humus in the main soil types of Russia // Eurasian Soil Science. 2004. V 37. №. 2. Р. 143-158.
4. Borisenko E.N. Geohimiya gleevogo katageneza v porodah krasnocvetnoj formacii [Geochemistry of the Gley Catagenesis of Red Rocks]. Moscow, Nauka, 1980. 164 p. (In Russian)
5. Dubovik D.V., Dubovik E.V. Heavy metals in ordinary chernozems on slopes of different gradients and aspects // Eurasian soil science. 2016. V 49. № 1. P. 33-44.
6. Fan T.-T., Wang Yu-J., Li Ch.-B., Zhou D.-M., Friedman S.P Effects of soil organic matter on sorption of metal ions on soil clay particles // Soil Science Society of America J. 2015. V. 79. Р. 794802.
7. Geochemical atlas of Europe. Pt. 1. Background information, methodology and maps. Espoo: Geol. Surve. ofFinland, 2005. 526 p.
8. Glazovskaja M.A., Kasimov N.S. Landshaftno-geohimicheskie osnovy fonovogo monitoringa prirodnoj sredy [Landscape-geochemical bases for background monitoring of the natural environment] // Vestnik Mosk. Un-ta. Serija 5: Geografija, 1987. № 1. Р. 11-16. (In Russian)
9. Grigor’ev N. A. Raspredelenie himicheskih jelementov v verhnej chasti kontinental’noj kory [Distribution of chemical ements in the upper part of the continental crust]. UrO RAN, Ekaterinburg, 2009. 382 p. (In Russian)
10. Hu Z., Gao S. Upper crustal abundances of trace elements: A revision and update // Chem. Geol. 2008. V 253. Iss. 3-4. P 205221.
11. Il’in VB., SysoA.I. Pochvenno-geohimicheskie provincii v Ob’-Irtyshskom mezhdurech’e: prichiny i sledstvija [Soil-geochemical provinces in the Ob-Irtysh rivers interfluve: causes and consequences] // Sibirskij jekologicheskij zhurnal. 2001. № 2. P. 111118. (In Russian)
12. Jetjudy po biogeohimii jelementov-biofilov [Etudes on biogeochemistry of the biophile elements]. Nauka, Novosibirsk, 1977. 101 p. (In Russian)
13. Kabata-Pendias A. Trace Elements in soils and plants. L.; N.Y.: CRC Press, 2011, 505 p.
14. Landshaftno-geohimicheskie osnovy fonovogo monitoringa prirodnoj sredy [Landscape-geochemical bases of the background monitoring of the natural environment]. Nauka, Moscow, 1989. 264 p. (In Russian)
15. Mikrojelementy v pochvah SSSR [Trace elements in soils of the USSR]. MGU, Moscow, 1981. 252 p. (In Russian)
16. Moskovchenko D.V Biogeohimicheskie osobennosti pochv bassejna reki Messojaha (Tazovskij rajon Jamalo-Neneckogo avtonomnogo okruga) [Biogeochemical properties of soils of the Messoyakha River basin (Tazovsky district of the Yamal-Nenets Autonomous Area] // Vestnik Tyumenskogo gosudarstvennogo universiteta. Jekologija i prirodopol’zovanie, 2016. V. 2, № 2. P. 821. (In Russian)
17. Moskovchenko D.V. Jekogeohimija neftegazodobyvajushhih rajonov Zapadnoj Sibiri [Ecogeochemistry of oil and gas producing regions of Western Siberia]. Geo, Novosibirsk, 2013. 259 s. (In Russian)
18. Motuzova G.V., Minkina T.M., Karpova E.A. et al. Soil contamination with heavy metals as a potential and real risk to the environment // J. of Geochemical Exploration. 2014. V 144. Р. 241246.
19. Nechaeva E.G., Snytko V.A., Naprasnikova E.V. i dr. Indikacionnaja rol’ dolinnyh geosistem v landshaftno-geohimicheskoj ocenke [Indication Model of the Valley Geosystems on the Landscape-Geochemical Evaluation of the Upper Near-Angara Region] // Izvestija RAN. Ser. Geograficheskaja. 2010. № 2. Р 9099. (In Russian)
20. Reimann C., Fabian K., Birke M. et al. GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil // Applied Geochemistry. 2018. V. 88. P 302-318.
21. Saby N.P.A., Thioulouse J., Jolivet C.C. et al. Multivariate analysis of the spatial patterns of 8 trace elements using the French soil monitoring network data // Scie. of the Total Environment. 2009. V 407. P 5644-5652.
22. Samonova O.A., Aseeva E.N., Kasimov N.S. Metals in 10,25 mm grain-size fraction in the soils of the mixed forest zone of the Russian plain // J. of Geochemical Exploration. 2018. V. 184. Р 381-393.
23. Samonova O.A., Kosheleva N.E., Kasimov N.S. Associacii mikrojelementov v profile dernovo-podzolistyh pochv juzhnoj tajgi [Associations of microelements in the profile of soddy-podzolic soils of the southern taiga] // Vestnik Moskovskogo universiteta. Serija 17. Pochvovedenie. 1998. № 2. Р 14-19. (In Russian)
24. Samsonova VP. Prostranstvennaja izmenchivost’ pochvennyh svojstv na primere dernovo-podzolistyh pochv [Spatial variability of soil conditions by the example of soddy-podzolic soils]. LK. Moscow, 2008. 160 p. (In Russian)
25. Semenkov I.N., Kasimov N.S., Terskaja E.V. Lateral’noe raspredelenie form metallov v tundrovyh, taezhnyh i lesostepnyh katenah Vostochno-Evropejskoj ravniny [Lateral distribution of metal forms in tundra, taiga and forest-steppe catenas of the East European Plain] // Vestn. Mosk. un-ta. Ser. 5. Geografija. 2016. № 3. Р 29-39. (In Russian)
26. Shcheglov D.I., Gorbunova N.S., Semenova L.A., Khatuntseva O.A. Microelements in soils of conjugated landscapes with different degrees of hydromorphysm in the Kamennaya steppe // Eurasian Soil Science. 2013. V 46. № 3. P 254-261.
27. Sipos P Distribution and sorption of potentially toxic metals in four forest soils from Hungary // Central European J. of Geosciences. 2009. V 1-2. Р 183-192.
28. Sipos P., Nemeth T., Mohai I., Dodony I. Effect of soil composition on adsorption of lead as reflected by a study on a natural forest soil profile // Geoderma. 2005. V 124. P 363-374.
29. Soderzhanie i formy mikrojelementov v pochvah [Concentrations and forms of microelements in soils] / Ed.: N.G. Zyrin MGU, Moscow, 1979. 387 p. (In Russian)
30. Struktura, funkcionirovanie i jevoljucija sistemy biogeocenozov Baraby. V I. Biogeocenozy i ih komponenty [Structure, functioning and evolution of the Baraba biogeocenosis system. V. I. Biogeocenoses and their components]. Nauka, Novosibirsk, 1974. 307 p. (In Russian)
31. Syso A.I. Zakonomernosti raspredeleniya himicheskih elementov v pochvoobrazuyushih porodah i pochvah Zapadnoj Sibiri [Regularities of distribution of chemical elements in soilforming rocks and soils of Western Siberia]. SO RAS, Novosibirsk, 2007. 277 p. (In Russian)
32. Syso A.I., Sokolov V.A., Petukhov V.L. et al. Ecological and Biogeochemical Evaluation of Elements Content in Soils and Fodder Grasses of the Agricultural Lands of Siberia // J. Pharm. Sci. & Res. 2017. V 9. № 4. 2017. P 368-374.
Review
For citations:
Semenkov I.N., Kasimov N.S., Terskaya E.V. Lateral differentiation of metal fractions in loamy soil catenas of the central part of Western Siberia plain. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2019;(3):25-37. (In Russ.)