Preview

Lomonosov Geography Journal

Advanced search

BIOCLIMATIC APPROACH TO THE ASSESSMENT OF POPULATION MORTALITY DURING HEAT WAVES: CASE STUDY OF THE SOUTH OF RUSSIA

Abstract

The results of research to determine the best bioclimatic predictor of mortality during heat waves are presented. Rostov-on-Don was chosen as a model city; statistical data for daily mortality and daily meteorological data for the warm period of 1999-2011 were analyzed. The research has shown the interrelation between the heat waves and population mortality. The risk of mortality due to coronary heart disease and cerebrovascular diseases increases with the rising temperature. The use of bioclimatic indices helps to identify the links between thermal indices and health risks. The study suggests application of the Physiological Equivalent Temperature (PET) index as a most promising one for further modeling the effects of high ambient temperatures on public health.

About the Authors

N. V. Shartova
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Senior Scientific Researcher, PhD. in Geography


D. A. Shaposhnikov
Institute of Economic Forecasting, Russian Academy of Sciences
Russian Federation
Environmental Health Laboratory, Senior Scientific Researcher, PhD. in Physics and Mathematics


P. I. Konstantinov
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Meteorology and Climatology, Senior Lecturer, PhD. in Geography


B. A. Revich
Institute of Economic Forecasting
Russian Federation
Russian Academy of Sciences, Environmental Health Laboratory, Head of the Laboratory, Professor, D.Sc. in Mathematics


References

1. Akaike H. Information theory and an extension of the maximum likelihood principle // 2nd International Symp. on Information Theory. 1973. P. 267–281.

2. Analiz uslovij anomal’noj pogody na territorii Rossii letom 2010 goda. Sbornik dokladov [Analysis of the abnormal weather conditions within the territory of Russia in summer 2010. Proceedings]. Moscow: Triada, ltd, 2011. 72 p. (in Russian).

3. Basarin B., Lukić T., Matzarakis A. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia // Int. J. Biometeorol. 2016. V. 60. № 1. P. 139–150. doi: 10.1007/s00484-015-1012-z

4. Blazejczyk K., Epstein Y., Jendritzky G., Staiger H., Tinz B. Comparison of UTCI to selected thermal indices // Int. J. Biometeorol. 2012. V. 56. P. 515–535.

5. de’Donato F.K., Leone M., Scortichini M., De Sario M., Katsouyanni K., Lanki T., Basagańa X., Ballester F., Ĺström C., Paldy A. Changes in the effect of heat on mortality in the last 20 years in nine European cities. results from the phase project // Int. J. Environ. Res. Public Health. 2015. V. 12. P. 15 567– 15 583.

6. Dematte J.E., O’Mara K., Buescher J., Whitney C.G., Forsythe S., McNamee T. et al. Near-Fatal Heat Stroke during the 1995 Heat Wave in Chicago // Ann Intern Med. 1998. V. 129. P. 173– 181. doi: 10.7326/0003-4819-129-3-199808010-00001

7. Frich A., Alexander L.V., Della-Marta P., Gleason B., Haylock M., Klein Tank A.M.G., Peterson T. Observed coherent changes in climatic extremes during the second half of the twentieth century // Climate Research. 2012. V. 19. Р. 193–212.

8. Fouillet A., Rey G., Wagner V., Laaidi K., EmpereurBissonnet P., Le Tertre A., Frayssinet P., Bessemoulin P., Laurent F., De Crouy-Chanel P., Jougla E., Hйmon D. Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave // Int. J. Epidemiol. 2008. V. 37. P. 309–317.

9. Gosling S.N., Lowe J.A., McGregor G.R., Pelling M., Malamud B.D. Associations between elevated atmospheric temperature and human mortality: a critical review of the literature // Climatic Change. 2009. V. 92. № 3–4. P. 299–341. https://doi.org/10.1007/s10584-008-9441-x

10. Höppe P. Die Energiebilanz des Menschen. Wiss Mittl Meteorol. Inst. Uni München, 1984. 49 p.

11. Izmenenie klimata, 2007. Obobshhajushhij doklad. Vklad rabochih grupp I, II i III v 4-j doklad ob ocenke Mezhpravitel’stvennoj gruppy po izmeneniju klimata [Climate change, 2007. Synthesis report. Contribution of Working Groups I, II and III to the 4th Assessment Report of the Intergovernmental Panel on Climate Change]. Geneva: IPCC, 2007. 103 p. (in Russian).

12. Konstantinov P.I., Varentsov M.I., Malinina E.P. Modeling of thermal comfort conditions inside the urban boundary layer during Moscow’s 2010 summer heat wave (case-study) // Urban Climate. 2014. V. 10. № 3. P. 63–572.

13. Kovats R.S., Hajat S. Heat Stress and Public Health: A Critical Review // Annu. Rev. Public Health. 2008. V. 29. № 1. P. 41–55. doi: 10.1146/annurev.publhealth.29.020907.090843

14. Laaidi K., Zeghnoun A., Dousset B. et al. The Impact of Heat Islands on Mortality in Paris during the August 2003 Heat Wave // Environmental Health Perspectives. 2012. V. 120. № 2. P. 254–259. doi: 10.1289/ehp.1103532

15. Lim J.-S., Kwon H.-M., Kim S.-E., Lee J., Lee Y.-S., Yoon B.-W. Effects of Temperature and Pressure on Acute Stroke Incidence Assessed Using a Korean Nationwide Insurance Database // J. Stroke. 2017. V. 19. P. 295–303. doi: 10.5853/jos.2017.00045

16. Masterson J., Richardson F.A. Humidex, A Method of Quantifying Human Discomfort Due to Excessive Heat and Humidity. Downsview, Ontario: Environment Canada, 1979. 45 p.

17. Matzarakis A., Amelung B., Blazejczyk K. Climate Change and Tourism – Assessment and Coping Strategies. Maastricht– Warsaw–Freiburg, 2007. 227 p.

18. Matzarakis A., Rutz F., Mayer H. Modelling radiation fluxes in simple and complex environments–application of the RayMan model // Int. J. Biometeorol. 2007. V. 51. 323 р. https://doi.org/10.1007/s00484-006-0061-8

19. McMichael A.J., Woodruff R.E., Hales S. Climate change and human health: present and future risks // Lancet. 2006. V. 367. P. 859–69. doi: 10.1016/S0140-6736(06) 68079-3

20. Muthers S., Matzarakis A., Koch E. Climate Change and Mortality in Vienna–A Human Biometeorological Analysis Based on Regional Climate Modeling // Int. J. Environ Res Public Health. 2010. V. 7. № 7. P. 2965–2977. doi: 10.3390/ijerph7072965

21. Porfir’ev B.N. Jekonomicheskaja ocenka ljudskih poter’ v rezul’tate chrezvychajnyh situacij [Economic evaluation of human losses resulting from the emergencies] Voprosy jekonomiki. 2013. № 1. S. 46–68 (in Russian).

22. Revich B., Shaposhnikov D. Temperature-induced excess mortality in Moscow, Russia // Int. J. Biometeorol. 2008. V. 52. P. 367–374.

23. Revich B.A. Volny zhary kak faktor riska dlja zdorov’ja naselenija [Heat waves as a risk factor for public health] // Russian Pulmonology. 2011. № 4. P. 34–37 (in Russian).

24. Revich B.A., Shaposhnikov D.A., Podol’naja M.L., Har’kova T.L., Kvasha E.P. Volny zhary v juzhnyh gorodah Evropejskoj chasti Rossii kak faktor riska prezhdevremennoj smertnosti naselenija [Heat waves in the southern cities of the European part of Russia as a risk factor for early mortality of population] // Studies on Russian Economic Development. 2015. № 2. P. 56–67 (in Russian).

25. Ruuhela R., Jylhä K., Lanki T., Tiittanen P., Matzarakis A. Biometeorological assessment of mortality related to extreme temperatures in Helsinki region, Finland, 1972–2014 // Int. J. Environmental Research and Public Health. 2017. V. 14. № 8. P. 944. doi: 10.3390/ijerph14080944

26. Sarath Chandran M.A., Subba Rao A.V.M., Sandeep V.M., Pramod V.P., Pani P., Rao V.U.M., Visha Kumari V., Srinivasa Rao C. Indian summer heat wave of 2015: a biometeorological analysis using half hourly automatic weather station data with special reference to Andhra Pradesh // Int J. Biometeorol. 2017. V. 61. P. 1063–1072. doi: 10.1007/s00484-016-1286-9

27. Schifano P., Cappai G., De Sario M., Michelozzi P., Marino C., Bargagli A.M., Perucci C.A. Susceptibility to heat wave-related mortality: a follow-up study of a cohort of elderly in Rome // Environ. Health. 2009. № 8. 50 р.

28. Shaposhnikov D., Revich B., Bellander T. et al. Mortality Related to Air Pollution with the Moscow Heat Wave and Wildfire of 2010 // Epidemiology. 2014. V. 25. № 3. Р. 359–364. http://doi.org/10.1097/EDE.0000000000000090.

29. Shaposhnikov D., Revich B., Gurfinkel Y., Naumova E. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia // Int. J. Biometeorol. 2014. V. 58. P. 799–808.

30. Steadman R.G. A universal scale of apparent temperature // J. Applied Meteorology. 1984. V. 23. P. 1674–1687. doi: 10.1175/1520-0450(1971)0102.0.CO;2.

31. Steadman R.G. Norms of apparent temperature in Australia. Aust Met Mag, 1994. V. 43. P. 1–16.


Review

For citations:


Shartova N.V., Shaposhnikov D.A., Konstantinov P.I., Revich B.A. BIOCLIMATIC APPROACH TO THE ASSESSMENT OF POPULATION MORTALITY DURING HEAT WAVES: CASE STUDY OF THE SOUTH OF RUSSIA. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2018;(6):47-55. (In Russ.)

Views: 938


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)