Preview

Lomonosov Geography Journal

Advanced search

DEPOSITED SOIL MATTER AND THE CARBON DIOXIDE EMISSION WITHIN THE DON RIVER BASIN

Abstract

An algorithm for calculating the amount of soil matter washed out from the arable lands as a result of accelerated soil erosion for the period of intensive land use (the last 300 years) and associated organic carbon accumulation in deposited matter, as well as the actual carbon dioxide flow from this carbon pool, was proposed. The calculations are based on the current intensity of soil erosion in the river basin and the content of organic matter in the soils, transformed to the period of intensive land use by time-dependent corrections to erosion factors, i. e. climate change, soil conditions and land use. The calculations show that over 300 years about 16,9 109 tons of soil was washed away from the arable lands in the Don River basin (425 000 km2) including 0,41 109 tons of organic carbon. 95% of this matter was accumulated in the bottoms of balkas and dry valleys on the area of 12 900 km2, forming a layer of deposited soils (stratozems) with an average thickness of 0,9–1,0 m. The lower part of the profile of these cumulic soils (below 0,25– 0,45 m) was classified as buried soils, since there is practically no renewal of organic carbon. The organic matter of the buried soils was mineralized and its content decreased in time. The modern uncompensated carbon emission (as CO2) in the Don River basin was calculated to be 1,6–2,1 t/km2 per year, amounting to about 0,5–0,75% of microbial respiration of modern soils in the steppe zone of Russia. Despite rather large amount of organic carbon buried in the cumulic soils, the modern emission of carbon dioxide from this carbon pool formed by the accelerated erosion and accumulation processes does not affect significantly the CO2 budget in the atmosphere. It is thus possible not to consider it in the scenarios of the anthropogenic climate change.

About the Author

A. Yu. Sidorchuk
Lomonosov Moscow State University.
Russian Federation
Faculty of Geography, Leading Scientific Researcher, D.Sc. in Geography.


References

1. Chendev Yu.G., Smirnova L.G., Petin A.N., Kukharuk N.S., Novykh L.L. Dlitel’nyye izmeneniya soderzhaniya gumusa v pakhotnykh chernozemakh sentraVostochno-Yevropeyskoy ravniny. [Long-term changes of humus content in arable chernozems of the centre of the East European Plain] // Dostizheniya nauki i tekhniki APK. 2011. № 8. P. 6–9 (in Russian).

2. Gennadiev A.N., Golosov V.N., Chernyansky S.S., Markelov M.V., Olson K.R., Kovach R.G., Belyaev V.R. Analiz sopryazhennogo ispol’zovaniya radioaktivnogo i magnitnogo trasserov dlya kolichestvennoy otsenki erozii pochv. [Analysis of the conjugate use of radioactive and magnetic tracers for the quantitative assessment of soil erosion] // Pochvovedenie. 2005. № 9. P. 1080–1093 (in Russian).

3. Gennadiev A.N., Zhidkin A.P., Olson K.R., Kachinsky V.L. Eroziya i poteri organicheskogo ugleroda pri raspashke sklonov. [Erosion and loss of organic carbon during the plowing of slopes]. Vestnik Mosk. un-ta, seriya geografiya. 2010. № 6. P. 32–38 (in Russian).

4. Golosov V.N. Akkumulyatsiya v balkakh Russkoy ravniny [Accumulation in the balkas of the Russian Plain] // Eroziya Pochv i Ruslovyye Protsessy. Moscow: Izd-vo Mosk. un-ta,1998. V. 11. P. 97–112 (in Russian).

5. Ivanov I.V., Khokhlova O.S., Chichagova O.A. Prirodnyy radiouglerod i osobennosti gumusa sovremennykh i pogrebennykh chernozemov [Natural radiocarbon and specific features of humus of modern and buried chernozems] // Izvestiya RAN. Seriya Geograficheskaya. 2009. № 6. P. 46–58 (in Russian).

6. Klein Tank A.M.G. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment // Int. J. of Climatol. 2001. V. 22. P. 1441–1453. Data and metadata available at http://www.ecad.eu.

7. Kudeyarov V.I., Kurganova I.N. Dykhaniye pochv Rossii: analiz bazy dannykh, mnogoletniy monitoring, obshchiye otsenki [Respiration of Russian soils: database analysis, long-term monitoring, general estimates] // Pochvovedenie. 2005. № 9. P. 1112– 1121 (in Russian).

8. Larionov G.A. Eroziya i deflyatsiya pochv: osnovnyye zakonomernosti i kolichestvennyye otsenki. [Erosion and deflation of soils: basic regularities and quantitative estimates]. Moscow: Izd-vo MGU, 1993. 200 p. (in Russian).

9. Litvin L.F., Zorina Ye.F., Sidorchuk A.Yu, Chernov A.V., Golosov V.N. Erosion and sedimentation on the Russian plain. P. 1: Contemporary processes // Hydrological Processes. 2003. V. 17. № 16. P. 3335–3346.

10. Litvin L.F. Geografiya erozii pochv sel’skokhozyaystvennykh zemel’ Rossii. [Geography of soil erosion within agricultural lands of Russia]. IKTS Moscow: «Akademkniga», 2002. 255 p. (in Russian).

11. Prytkova M. Osadkonakopleniye v malykh vodokhranilishchakh. Balansovyye issledovaniya [Sedimentation in small reservoirs. Balance studies]. Leningrad: Nauka, 1981. 152 p. (in Russian).

12. Resursy poverkhnostnykh vod SSSR. Gidrologicheskaya izuchennost’ Donskoy rayon [Resources of surface waters of the USSR. Hydrological study. The Don River district]. Leningrad: Gidrometeoizdat, 1964. V. 7.

13. Resursy poverkhnostnykh vod SSSR. Donskoy rayon [Resources of surface waters of the USSR. The Don River district]. V. 7. Leningrad: Gidrometeoizdat, 1973.

14. Resursy poverkhnostnykh vod SSSR. Ukraina i Moldaviya. Basseyny Severskogo Dontsa i reki Priazov’ya. [Resources of surface waters of the USSR. Ukraine and Moldova. Basins of the Seversky Donets and the Azov Sea area rivers]. Leningrad: Gidrometeoizdat, 1967. V. 6. Is. 3.

15. Sidorchuk A., Litvin L., Golosov V.,Chernysh A. European Russia and Byelorus. Soil Erosion in Europe. Chichester: Wiley, 2006. P. 73–93.

16. Sidorchuk A.Yu. Erozionno-akkumulyativnyye protsessy na Russkoy ravnine i problemy zaileniya malykh rek. [Erosionaccumulative processes within the Russian Plain and problems of silting of small rivers] // Tr. Akademii vodokhozyaystvennykh nauk. Moscow, 1995. V. 1. P. 74–83 (in Russian).

17. Sidorchuk A.Yu. Floodplain sedimentation: Inherited memories // Global and Planetary Change. 2003.V. 39. № 1–2. P. 13– 29.

18. Sidorchuk A.Yu. Fraktal’naya geometriya rechnykh setey [Fractal geometry of river networks] // Geomorfologiya. 2014. № 1. P. 3–14 (in Russian).

19. Sleptsov A.M., Klimenko V.V. Obobshcheniye paleoklimaticheskikh dannykh i rekonstruktsiya klimata Vostochnoy Yevropy za posledniye 2000 let. [Generalization of paleoclimatic data and reconstruction of the climate of Eastern Europe for recent 2000 years] // Istoriya i sovremennost’. 2005. № 1. P. 118–135 (in Russian).

20. The Unified State Register of Soil Resources of Russia. http:// infosoil.ru/reestr, 2014 (in Russian).

21. Tishkina E.V., Ivanova N.N. Pochvennyy pokrov raspakhannykh i tselinnykh pribalochnykh sklonov (Kurskaya oblast’) [Soil cover of ploughed and virgin near-ravine slopes (Kursk region)] // Vestnik Mosk. un-ta. Ser. geografiya. 2010. № 6. P. 73– 79 (in Russian).

22. Tsvetkov M.A. Izmeneniye lesistosti Yevropeyskoy Rossii s kontsa XVII stoletiya po 1914 g. [Change in the forest cover of European Russia since the end of the 17th century till 1914]. M.: Izd-vo AN SSSR, 1957. 212 p. (in Russian).


Review

For citations:


Sidorchuk A.Yu. DEPOSITED SOIL MATTER AND THE CARBON DIOXIDE EMISSION WITHIN THE DON RIVER BASIN. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2018;(4):21-28. (In Russ.)

Views: 868


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)