Preview

Lomonosov Geography Journal

Advanced search

SIMULATIONS OF MOSCOW AGGLOMERATION HEAT ISLAND WITHIN THE FRAMEWORK OF THE REGIONAL CLIMATE MODEL COSMO-CLM

Abstract

The paper discusses the first application of the mesoscale regional climate model COSMO-CLM coupled with two spatialized urban canopy parameterizations, single-layer urban canopy model TEB (Town Energy Balance) and bulk parameterization TERRA-URB for the modeling of summer microclimatic conditions in Moscow agglomeration. The model was used for dynamic downscaling of reanalysis data with due regard to specific physical features of urban surface, which are responsible for the formation of urban heat island (UHI). Urban morphology parameters, needed for the parameterizations, were calculated from the OpenStreetMap database using the original GIS-based technology. Verification of the model was based on the comparison of modeling results and temperature observations of weather stations and airquality monitoring stations, including new stations which were installed during recent years. Comparison of modeling results, obtained with two urban canopy parameterizations, has shown that both of them are able to simulate UHI within the near-surface air temperature field and temporal variations of its intensity. However, more detailed analysis shows a significant difference between two schemes. Warming influence of urbanized surface simulated with TERRA-URB affects both model cells with buildings, and adjacent «green» cells (first of all urban parks) and higher model levels, resulting in a temperature anomaly of few hundred meters high, which is in good agreement with observation data. In the TEB scheme the influence of urbanized surface on adjacent model cells and the boundary layer above the city was less pronounced. Therefore, we can conclude that the COSMO-CLM model with TERRA-URB parameterization reproduces the UHI phenomenon in more realistic way. The importance of correct definition of model parameters of turbulent diffusion for adequate simulations of UHI behavior was also shown.

About the Authors

M. I. Varentsov
Lomonosov Moscow State University.
Russian Federation
Faculty of Geography, Department of Meteorology and Climatology, postgraduate student.


T. E. Samsonov
Lomonosov Moscow State University.
Russian Federation
Faculty of Geography, Department of Cartography and Geoinformatics, Leading Scientific Researcher, PhD in Geography.


A. V. Kislov
Lomonosov Moscow State University.
Russian Federation
Faculty of Geography, Department of Meteorology and Climatology, Hear of Department, Professor, D.Sc. in Geography.


P. I. Konstantinov
Lomonosov Moscow State University.
Russian Federation
Faculty of Geography, Department of Meteorology and Climatology, Senior Lecturer, PhD in Geography.


References

1. Alferov D.Y., Rivin G.S. Sistema mezomasshtabnogo prognoza pogody COSMO-Ru: ansamblevyj prognoz [System of mesoscale weather forecast COSMO-Ru: ensemble forecast] // Proccedings of Hydrometeorologica Center of Russia. 2011. V. 346. P. 5–16 (in Russian).

2. Alexandrov G.G., Belova I.N., Ginzburg A.S. Antropogennye potoki tepla v stolichnyh aglomeraciyah Rossii i Kitaya [Anthropogenic heat fluxes in capital agglomerations in Russia and China] // Doklady Akademii Nauk. 2014. V. 457. № 1. P. 101–106 (in Russian).

3. Anders I., Paumann M., Chimani B., Hofstätter M. Impacts of using spectral nudging on COSMO-CLM simulations of single Vbevents. In: 3rd International Lund Regional-Scale Climate Modelling Workshop Proceedings, 2014, P. 154–155.

4. Böhm U., Kücken M., Ahrens W., Block A., Hauffe D., Keuler K., Rockel B., Will A. CLM – the climate version of LM: Brief description and long-term applications. COSMO Newsletter. 2006. V. 6. P. 225–235.

5. Buzzi M., Rotach M.W., Holtslag M., Holtslag A.A. Evaluation of the COSMO-SC turbulence scheme in a shear-driven stable boundary layer. Meteorologische Zeitschrift, 2011. V. 20. № 3. P. 335–350.

6. Cerenzia I., Tampieri F., Tesini M.S. Diagnosis of Turbulence Schema in Stable Atmospheric Conditions and Sensitivity Tests. Cosmo Newsletter. 2014. V. 14.

7. Champeaux J.L., Masson V., Chauvin F. ECOCLIMAP: a global database of land surface parameters at 1 km resolution. Meteorological Applications. 2005. V. 12. № 1. P. 29–32.

8. Dee D.P., Uppala S.M., Simmons A.J., Berrisfor P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hölm E.V., Isaksen L., Källberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépau J.-N. Vitart. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc. 2011. V. 137. P. 553–597. doi:10.1002/qj.828.

9. Doms G., Foerstner J., Heise E., Herzog H.-J., Mironov D., Raschendorfer M., Reinhardt T., Ritter B., Schrodin R., Schulz J.-P., Vogel G. A Description of the Nonhydrostatic Regional COSMOModel. Part II: Physical Parameterization. COSMO-Model 4.20. Offenbach, 2011, 154 p., http://www.cosmo-model.org/content /model/documentation/core/cosmoPhysParamtr.pdf.

10. Doms G., Baldauf M.A. Description of the Nonhydrostatic Regional COSMO-Model. Part I: Dynamics and Numerics. COSMO-Model 5.1. Offenbach, 2015, 158 p., http://www.cosmomodel.org/content/model/documentation/core/cosmoDyncs

11. Numcs.pdf. Ebert E.E. Fuzzy verification of high?resolution gridded forecasts: a review and proposed framework. Meteorological applications. 2008. V. 15. № 1. P. 51–64.

12. Fan H., Sailor D.J. Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: a comparison of implementations in two PBL schemes. Atmospheric Environment. 2005. Т. 39. № 1. С. 73–84.

13. Feser F., Barcikowska M. The influence of spectral nudging on typhoon formation in regional climate models. Environmental Research Letters. 2012. V. 7. № 1. P. 14–24.

14. Flanner M.G. Integrating anthropogenic heat flux with global climate models. Geophysical Research Letters. 2009. V. 36. № 2.

15. Haklay M., Weber P. OpenStreetMap: User-generated street maps. IEEE Pervasive Computing. 2008. V. 7. № 4. P. 12–18.

16. Ginzburg A.S., Belova I.N., Raspletina N.V. Antropogennye potoki tepla v gorodskih aglomeraciyah [Anthropogenic heat fluxes in urban agglomerations] // Doklady Akademii Nauk. 2011. V. 439. № 2. P. 256–259 (in Russian).

17. Gorbarenko E.V., Abakumova G.M. Variacii radiacionnogo balansa podstilayushhej poverhnosti po mnogoletnim nabljudeniyam MO MGU [Variations of surface radiation balance according to the long-term observations at the MSU meteorological observatory] // Meteorologiya i gidrologiya. 2011. № 6. P. 42–54 (in Russian).

18. Gorchakov G.I., Kadygrov E.N., Kunitsyn V.E., Zakharov V.I., Semutnikova E.G., Karpov A.V., Kurbatov G.A., Miller E.A., Sitanskii S.I. The Moscow heat island in the blocking anticyclone during summer 2010. Doklady Earth Sciences. Springer Science & Business Media, 2014. V. 456. № 2. P. 736–740.

19. Kadygrov E.N., Kuznecova I.N., Golicyn G.S. Ostrov tepla v pogranichnom sloe atmosfery nad bol’shim gorodom: novye rezul’taty na osnove distancionnyh dannyh [Heat island in the atmospheric boundary layer over a big city: new results according to remote sensing data] / Doklady Akademii Nauk. 2002. V. 385. № 4. P. 541–548 (in Russian).

20. Kislov A.V., Varentsov M.I., Gorlach I.A., Alekseeva L.I. «Ostrov tepla» moskovskoj aglomeracii i urbanisticheskoe usilenie global’nogo potepleniya [«Heat island» of the Moscow agglomeration and urban amplification of global warming] // Vestnik Moskovskogo universiteta. 2017 (in Russian, in print).

21. Kislov A.V., Rozinkina I.A., Chernyshov A.V. Tehnologiya modelirovaniya mikroklimaticheskih osobennostej gornoj territorii v ramkah modelej obshhej cirkulyacii atmosfery [Technology of modeling the microclimatic features of mountain area within the framework of global atmospheric circulation models] // Meteorologiya i gidrologiya. 2006. № 10. P. 45–53 (in Russian).

22. Lokoshhenko M.A., Korneeva I.A., Kochin A.V., Duboveckij A.Z., Novickij M.A., Razin P.E. O vysotnoj protyazhennosti gorodskogo «ostrova tepla» nad Moskvoj [Vertical extension of the urban heat island over Moscow] // Doklady Akademii nauk. 2016. V. 466. № 2. P. 213–217 (in Russian).

23. Masson V. A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models. Boundary-Layer Meteorology. 2000. V. 94. № 3. P. 357–397.

24. Myagkov M.S., Gubernskij Ju.D., Konova L.I., Lickevich V.K. Gorod, arhitektura, chelovek i klimat [City, architecture, man and climate]. Moscow: Arhitektura-S, 2007. 340 p. (in Russian).

25. Nunez M., Oke T.R. Energy Balance of an Urban Canyon. J. Applied Meteorology. 1977. V. 16. P. 11–19.

26. Rosenzweig C., Solecki W., Slosberg R. Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. A report to the New York State Energy Research and Development Authority. 2006. 5 p.

27. Rossa A.M., Domenichini F., Szintai B. Selected COSMO-2 verification results over North-eastern Italian Veneto. COSMO Newsletter. 2012. V. 12. P. 64–71.

28. Stewart I., Kennedy C. Estimating anthropogenic heat release from megacities. ICUC9 – 9th International Conference on Urban Climate held jointly with the 12th Symposium on the Urban Environment, 20–24 July 2015, Toulouse, France.

29. Samsonov T.E., Konstantinov P.I. OpenStreetMap data assessment for extraction of urban land cover and geometry parameters required by urban climate modeling. Extended Abstract Proceedings of the GIScience 2014, September 23–26, Vienna, Austria. GeoInfo Series. 2014. V. 40. Hochschulerschaft, TU Vienna Vienna, Austria. Р. 395–399.

30. Samsonov T.E., Konstantinov P.I., Varentsov M.I. Objectoriented approach to urban canyon analysis and its applications in meteorological modeling. Urban Climate. 2015. V. 13. P. 122–139.

31. Storch H., Langenberg H., Feser F. A spectral nudging technique for dynamical downscaling purposes. Monthly weather review. 2000. V. 128. № 10. P. 3664–3673.

32. Stoffelen A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophysical Research. 1998. V. 103. № C4. P. 7755–7766.

33. Trusilova K., Früh B., Brienen S., Walter A., Masson V., Pigeon G., Becker P. Implementation of an Urban Parameterization Scheme into the Regional Climate Model COSMO-CLM. J. Applied Meteorology and Climatology. 2013. V. 52. P. 2296–2311.

34. Varentsov M.I., Verezemskaya P.S., Zabolotskikh E.K, Repina I.A. Ocenka kachestva vosproizvedeniya polyarnyh mezociklonov po dannym reanalizov i rezul’tatam regional’nogo klimaticheskogo modelirovanija [Evaluation of the quality of polar mesocycles reproducing by reanalises data and results of the regional climate modeling] // Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa, 2016. V. 13. № 4. Р. 168–191. DOI: 10.21046/2070-7401-2016-13-4-168-191 (in Russian).

35. Wouters H., Demuzere M., De Ridder K., van Lipzig N.P. The impact of impervious water-storage parametrization on urban climate modeling. Urban Climate. 2015. V. 11. P. 24–50.

36. Wouters H., Demuzere M., Blahak U., Fortuniak K., Maiheu B., Camps J., Tielemans D., van Lipzig N.P. The efficient urban canopy dependency parametrization (SURY) v 1. 0 for atmospheric modeling: description and application with the COSMO-CLM model for a Belgian summer. Geoscientific Model Development. 2016. V. 9. № 9. P. 3027–3054.

37. Wyngaard J.C. Toward numerical modeling in the «Terra Incognita». J. Atmospheric sciences. 2004. V. 61. № 14. P. 1816– 1826.


Review

For citations:


Varentsov M.I., Samsonov T.E., Kislov A.V., Konstantinov P.I. SIMULATIONS OF MOSCOW AGGLOMERATION HEAT ISLAND WITHIN THE FRAMEWORK OF THE REGIONAL CLIMATE MODEL COSMO-CLM. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2017;(6):25-37. (In Russ.)

Views: 727


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)