INTERANNUAL VARIABILITY OF STORM WAVES IN THE BLACK SEA ACCORDING TO NUMERICAL MODELLING RESULTS
Abstract
Parameters of wind waves in the Black Sea were simulated by the SWAN model and NCEP/NCAR reanalysis. The results of the simulation are used to define specific features of the spatio-temporal distribution of storminess. The simulation results were verified by the data of in-situ measurements performed with a Datawell wave buoy. Simulated values of significant wave height are lower than measured ones, therefore an empirical relationship is applied for correction. Seasonal and inter-annual variability of extreme storminess was assessed by analyzing series of annual and seasonal significant wave height values corresponding to each year, maximum monthly wave heights, and the spatial distribution of seasonal significant wave height maxima. No significant trends of these parameters were derived. A period of increased storminess in the 1960-s – early 1970-s, which was determined previously in terms of storm number and duration, is also expressed in annual significant wave height maxima. The spatial distribution of storminess is assessed based on the locations of annual significant wave height maxima. Their highest recurrence corresponds to the southwestern part of the sea. Storms of July 13th, 1969, and February 13th, 2004, are discussed as examples of extreme storms on the Black Sea.
About the Authors
F. N. GippiusRussian Federation
Faculty of Geography, Department of Oceanology, Scientific Researcher
V. S. Arkhipkin
Russian Federation
Faculty of Geography, Department of Oceanology, Associate Professor, PhD. in Geograph
References
1. Akpinar A., van Vledder G.Ph., Kömürcü M.I., Özger M. Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea // Continental Shelf Research. 2012. V. 50–51. P. 80–99. DOI 10.1016/j.csr.2012.09.012.
2. Arkhipkin V.S., Gippius F.N., Koltermann K.P., Surkova G.V. Wind waves in the Black Sea: results of a hindcast study // Natural Hazards and Earth System Sciences. 2014. V. 14. P. 2883–2897. DOI 10.5194/nhess-14-2883-2014.
3. Arhipkin V.S., Kosarev A.N., Gippius F.N., Migali D.I. Sezonnaja izmenchivost’ klimaticheskih polej temperatury, solenosti i cirkuljacii vod Chernogo i Kaspijskogo morej [Seasonal variations of climatic fields of temperature, salinity and water circulation in the Black and Caspian seas] // Vestnik Mosk. un-ta. Ser. 5. Geografija. 2013. № 5. Р. 33–44 (in Russian).
4. Boukhanovsky A.V., Divinsky B.V., Kos’yan R.D., Lopatoukhin L.I., Rozhkov V.A. Tipizacija vetrovogo volnenija Chernogo morja po instrumental’nym dannym [Typification of wind disturbance of the Black Sea under the instrumental data], Oceanology. N 2. P 289–297 (in Russian).
5. Benoit M., Marcos F., Becq F. Development of a third-generation shallow-water wave model with unstructured spatial meshing // Proc. 25th Int. Conf. Coastal Engineering, ASCE, Orlando, 1996. P. 465–478.
6. Booij N., Ris R.C., Holthuijsen L.H. A third-generation wave model for coastal regions. 1. Model description and validation // J. Geophysical Research. 1999. V. 140. N C4. P. 7649–7666.
7. Buhanovskij A.V., Lopatuhin L.I., Chernysheva E.S., Kolesov A.M. Shtorm na Chernom more 11 nojabrja 2007 goda i statistiki jekstremal’nyh shtormov morja [The storm on the Black Sea on 11 November 2007 and statistics of extreme storms of the sea] // Izvestija RGO. 2009. V. 141. N 2. P. 71–80 (in Russian).
8. Chen J., Del Genio A.D., Carlson B.E., Bosilovich M.G. The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: Long-term trend // J. Climate. 2008. V. 21. N 11. P. 2611–2633.
9. Doklady NAN Ukrainy. 2011, no 8, pp. 108–112 (in Russian).
10. Efimov V.V., Komarovskaja O.I. Atlas jekstremal’nogo vetrovogo volnenija Chernogo morja [Atlas of extreme wind waves in the Black Sea]. Sevastopol’, MGI NANU, 2009 (in Russian).
11. Galabov V., Kortcheva A., Bogatchev A., Tsenova B. Investigation of the hydro-meteorological hazards along the bulgarian coast of the Black Sea by reconstructions of historical storms // J. Environmental Protection and Ecology. 2015. V. 16. N 3. P. 1005–1015.
12. Garmashov A.V. Vetro-volnovye harakteristiki Chernogo morja. Diss. na soisk. uch. st. kandidata geogr. nauk [Wind-wave parameters of the Black Sea. PhD thesis]. Sevastopol’, 2013 (in Russian).
13. Gorrell L., Raubenheimer B., Steve Elgar, Guza R.T. SWAN predictions of waves observed in shallow water onshore of complex bathymetry // Coastal Engineering. 2011. V. 58. P. 510–516. DOI 10.1016/j.coastaleng.2011.01.013.
14. Haritonova L.V. Vetrovoe volnenie i litodinamicheskie process v pribrezhnoj zone zapadnogo Kryma. Diss. na soisk. uch. st. kandidata geogr. nauk [Wind waves and lithodynamical processes in the coastal zone of western Crimea. PhD thesis.]. Sevastopol’, 2013 (in Russian).
15. Hasselmann K., Barnett T.P., Bouws E., Carlson H., Cartwright D.E., Enke K., Ewing J.A., Gienapp H., Hasselmann D.E., Kruseman P., Meerburg A., Müller P., Olbers D.J., Richter K., Sell W., Walden H. Measurements of wind–wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) // Dtsch. Hydrogr. Z. Suppl. 1973. V. 12, A8.
16. Ivashincev N. Issledovanie shtorma, byvshego na Chernom more 2/14 nojabrja 1854 goda [A study of the storm occurred on the Black Sea the 2/14 November 1854], Morskoj sbornik. 1855. V. XVII. N 7. P. 1–25 (in Russian).
17. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woolen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph, D. The NCEP/NCAR 40-year Reanalysis Project // Bull. Amer. Meteor. Soc. 1996. V. 11. N 3. P. 437–471.
18. Kistler R., Collins W., Saha S., White G., Woollen J., Kalnay E., Chelliah M., Ebisuzaki W., Kanamitsu M., Kousky V., van den Dool H., Jenne R., Fiorino M. The NCEP–NCAR 50–Year Reanalysis: Monthly Means CD–ROM and Documentation // Bull. Amer. Meteor. Soc. 2001. V. 82. P. 247–267.
19. Komen G.J., Cavaleri L., Donelan M., Hasselmann K., Hasselmann S., Janssen P.A.E.M. Dynamics and Modelling of Ocean Waves, Cambridge University Press, 1994, 532 p.
20. Komen G.J., Hasselmann S., Hasselmann, K. On the existence of a fully developed wind-sea spectrum // J. Phys. Oceanogr. 1984. V. 14. P. 1271–1285.
21. Korshenko A., Ilyin Y., Velikova V. Oil spill in the Kerch Strait in November 2007. M.: Nauka, 2011. P. 34–78.
22. Myslenkov S.A., Arhipkin V.S. Analiz vetrovogo volnenija v Cemesskoj buhte Chernogo morja s ispol’zovaniem modeli SWAN [Analysis of wind waves in the Cemes bay of the Black Sea by means of the SWAN model] // Tr. Gidrometeorologicheskogo nauchno-issledovatel’skogo centra Rossijskoj Federacii. 2013. N 350, P. 58–67 (in Russian).
23. Myslenkov S.A., Shestakova A.A., Toropov P.A. Chislennoe modelirovanie shtormovogo volnenija u severo-vostochnogo poberezh’ja Chernogo morja [Numerical simulation of storm waves near the northeastern coast of the Black Sea], Meteorologija i gidrologija. 2016. N 10. P. 61–71 (in Russian).
24. Polonskij A.B., Fomin V.V., Garmashov A.B. Harakteristiki vetrovogo volnenija Chernogo morja [Characteristics of wind waves in the Black Sea], Doklady NAN Ukrainy. 2011. N 8. P. 108–112 (in Russian).
25. Ris R.C., Holthuijsen L.H., Booij N. A third-generation wave model for coastal regions. 2. Verification // J. Geophysical Research. 1999. V. 104. N C4. P. 7667–7681.
26. Rusu E., Pilar P, Guedes Soares C. Evaluation of the wave conditions in Madeira Archipelago with spectral models // Ocean Engineering. 2008. V. 35. P. 1357–1371. DOI 10.1016/j.oceaneng. 2008.05.007.
27. Spravochnye dannye po rezhimu vetra i volnenija Baltijskogo, Severnogo, Chernogo, Azovskogo i Sredizemnogo morej [Information on wind and wave regime of the Baltic, North, Black, Azov and Mediterranean Seas]. SPb.: Rossijskij morskoj registr sudohodstva, 2006 (in Russian).
28. Surkova G.V., Arkhipkin V.S., Kislov A.V. Atmospheric circulation and storm events in the Black Sea and Caspian Sea // Central European J. Geosciences. 2013. V. 5. N 4. P. 548–559. DOI 10.2478/s13533-012-0150-7 (in Russian).
29. SWAN. User manual SWAN Cycle III, version 40.41. Delft University of Technology. – December 2004. – http:// fluidmechanics.tudelft.nl/swan/index.htm.
30. Tolman H.L. A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents // J. Phys. Oceanogr. 1991. V. 21. N 6. P. 782–797.
31. Toropov P.A., Myslenkov S.A., Samsonov T.E. Chislennoe modelirovanie novorossijskoj bory i svjazannogo s nej vetrovogo volnenija [Numerical modeling of bora in Novorossiysk and associated wind waves], Vestnik Moskovskogo universiteta. Serija 5. Geografija. 2013. N 2. P. 38–46 (in Russian).
32. Valchev N.N., Trifonova E.V., Andreeva N.K. Past and recent trends in the western Black Sea storminess // Natural Hazards and Earth System Sciences. 2012. V. 12. P. 961–977. DOI 10.5194/nhess-12-961-2012.
33. van Ledden M., Vaughn G., Lansen J., Wiersma F., Amsterdam M. Extreme wave event along the Guyana coastline in October 2005 // Continental Shelf Research. 2009. V. 29. P. 352–361. DOI 10.1016/j.csr.2008.03.010.
34. Voevodin Vl.V., Zhumatij S.A., Sobolev S.I., Antonov A.S., Bryzgalov P.A., Nikitenko D.A., Stefanov K.S., Voevodin Vad.V. Praktika superkomp’jutera «Lomonosov» [«Lomonosov» supercomputer practice], Otkrytye sistemy. Moskva: Izdatel’skij dom «Otkrytye sistemy», 2012. N 7. P. 36–39 (in Russian).
35. WAMDI group: The WAM model – a third generation ocean wave prediction model // J. Phys. Oceanogr. 1988. V. 18. P. 1775– 1810.
36. Zijlema M. Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids // Coastal Engineering, 2010. V. 57. P. 267–77. DOI 10.1016/j.coastaleng.2009.10.011.
Review
For citations:
Gippius F.N., Arkhipkin V.S. INTERANNUAL VARIABILITY OF STORM WAVES IN THE BLACK SEA ACCORDING TO NUMERICAL MODELLING RESULTS. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2017;1(1):38-47. (In Russ.)