Preview

Lomonosov Geography Journal

Advanced search

Assessment of the trophic status of a reclamation pond by the fl oristic composition of macrophytes

https://doi.org/10.55959/MSU0579-9414.5.80.5.11

Abstract

The study is focused on the trophic status assessment of a reclamation pond using the floristic composition of coastal-aquatic vegetation. The most popular phytoindication methods, both descriptive and efficient, are those calculating the biotic index of freshwater ecosystems basing on the species composition of macrophytes. The method is based on assigning a bioindicative value, i.e. “trophic rank of species”, to the macrophytes. The water body is located within the territory of Kolomna urban district of the Moscow region. The catchment area is 1038,82 hectares; natural vegetation covers an area of 336,08 hectares (32,4%), water bodies – 25,53 hectares (2,5%), agricultural lands – 132,51 hectares (12,8%). The results of geobotanical survey and the remote sensing data suggested a fragmentary-microbelt type of location of the higher plants: mesophytes occupy 4,57 ha, hygrophytes – 4,13 ha, hygrogelophytes – 3,40 ha, and hydrophytes – 1,04 ha. The floristic composition of saprobity indicating species was analyzed to show that the trophic status of the pond is α-mesosaprobic. The large area (65,2%) of the pond’s littoral makes the macrophytes overgrowing highly possible. Water blooming caused by cyanobacteria is characteristic of the pond as a result of water stagnation in the absence of water transition to the downstream pool, input of biogenic elements from the catchment area and increasing water temperature on the littoral. The study shows that a complex of factors can be triggers for changing the environmental situation in the pond. In common they pose high risks for the further safe operation of the reclamation pond, both for regulating local runoff and for irrigation use. The information obtained is important for assessing the environmental consequences of changing state of reclamation facilities and developing a strategy for the management of life cycle of similar hydraulic structures. The procedure presented in the study could be adapted to study the trophic status of other aquatic ecosystems, contributing to better prediction and management of ecological risks in the amelioration branch of agriculture. 

About the Authors

M. S. Zverkov
All-Russian Scientifi c Research Institute “Raduga”
Russian Federation

M.S. Zverkov - Leading Scientifi c Researcher, Ph.D. in Engineering



S. S. Smelova
All-Russian Scientifi c Research Institute “Raduga”
Russian Federation

S.S. Smelova - Senior Scientifi c Researcher, Ph.D. in Biology, Associate Professor



References

1. Akinnawo S.O. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies, Environmental Challenges, 2023, vol. 12, DOI: 10.1016/j.envc.2023.100733.

2. Bakaeva E.N., Nikanorov A.M. Gidrobionty v otsenke kachestva vod sushi [Hydrobionts in assessing the quality of land waters], Moscow, Nauka Publ., 2006, 240 p. (In Russian)

3. Bioindikatsiya: teoriya, metody, prilozheniya [Bioindication: theory, methods, applications], G.S. Rozenberg (еd.), Tol’yatti, Inter-Volga Publ., 1994, 266 p. (In Russian)

4. Bulgakov D.V., Gzhibovskij S.A. Oblast bezopasnosti gidrotehnicheskih sooruzhenij zakreplennaya v normativno-pravovyh aktah Rossijskoj Federatsii [The area of safety of hydraulic structures specified in Russian Federation regulations], Ekologiya i stroitelstvo, 2024, no. 1, p. 9–16, DOI: 10.35688/2413-8452-2024-01-002. (In Russian)

5. Bytyçi P., Shala-Abazi A., Zhushi-Etemi F. et al. The Macrophyte Indices for Rivers to Assess the Ecological Conditions in the Klina River in the Republic of Kosovo, Plants, 2022, vol. 11, 1469, DOI: 10.3390/plants11111469.

6. Chen S.S., Kimirei I.A., Yu C. et al. Assessment of urban river water pollution with urbanization in East Africa, Environmental Science and Pollution Research, 2022, vol. 29, p. 40812–40825, DOI: 10.1007/s11356-021-18082-1.

7. Corbel S., Mougin C., Bouaïcha N. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops, Chemosphere, 2014, vol. 96, p. 1–15, DOI: 10.1016/j. chemosphere.2013.07.056.

8. Dulić Z., Poleksić V., Rašković B. et al. Assessment of the water quality of aquatic resources using biological methods, Desalination and Water Treatment, 2009, vol. 11, iss. 1–3, p. 264–274, DOI: 10.5004/dwt.2009.861.

9. Grzybowski M., Burandt P., Glińska-Lewczuk K. et al. Response of Macrophyte Diversity in Coastal Lakes to Watershed Land Use and Salinity Gradient, International Journal of Environmental Research and Public Health, 2022, vol. 19(24), 16620, DOI: 10.3390/ijerph192416620.

10. Islam S.T., Bhat S.U., Sabha I. et al. Comprehensive Assessment of Trophic Status and Chlorophyll-a Dynamics in the Jhelum River Basin: Implications for River Ecosystem Management, International Journal of Environmental Research, 2025, vol. 19, 48, DOI: 10.1007/s41742- 024-00705-3.

11. Katanskaya V.M. Vysshaya vodnaya rastitel’nost’ kontinental’nykh vodoemov SSSR. Metody izucheniya [Higher aquatic vegetation of continental water bodies of the USSR. Methods of study], Leningrad, Nauka Publ., 1981, 187 p. (In Russian)

12. Kriger N.I., Koposov E.V. Istoriya dolin basseina reki Oki: monografiya [History of the valleys of the Oka River basin: monograph], N. Novgorod, Nizhegorodskaya arkhitekturno-stroitel’naya akademiya Publ., 1996, 340 s. (In Russian)

13. Kupriyanov S.V. Geograficheskie issledovaniya prirody basseina maloi reki /na primere basseina reki Repinki [Geographical studies of the nature of a small river basin (case study of the Repinka River basin)], Kolomna, Kolomenskii ped.in-t Publ., 1995, 101 s. (In Russian)

14. Loginov V.V., Minina L.M., Krivdina T.V. et al. Otsenka trofnosti ust’evogo uchastka Oki na osnovanii sovremennykh abioticheskikh i bioticheskikh pokazatelei vodnykh mass [Trophic assessment of the Oka estuary area on the basis of modern data on abiotic and biotic indicators of water masses], Norwegian journal of development of the international science, 2021, no. 54-1, p. 13–27. (In Russian)

15. Melzer A. Aquatic macrophytes as tools for lake management, Hydrobiologia, 1999, vol. 395, p. 181–190, DOI: DOI:10.1023/A:1017001703033.

16. Najafzadeh M., Ahmadi-Rad E.S., Gebler D. Ecological states of watercourses regarding water quality parameters and hydromorphological parameters: deriving empirical equations by machine learning models, Stochastic Environmental Research and Risk Assessment, 2024, vol. 38, p. 665–688, DOI: 10.1007/s00477-023-02593-z.

17. Papchenkov V.G. O klassifikatsii makrofitov vodoemov i vodnoi rastitel’nosti [On the classification of macrophytes of water bodies and aquatic vegetation], Ekologiya, 1985, no. 6, p. 8–13. (In Russian)

18. Petrov D.S., Korotaeva A.E., Pashkevich M.A. et al. Correction to: Assessment of heavy metal accumulation potential of aquatic plants for bioindication and bioremediation of aquatic environment, Environmental Monitoring and Assessment, 2023, vol. 195, no. 3, p. 374, DOI: 10.1007/s10661-023-10976-6.

19. Philippov D.A., Ivicheva K.N., Makarenkova N.N. et al. Biodiversity of macrophyte communities and associated aquatic organisms in lakes of the Vologda Region (north-western Russia), Biodiversity Data Journal, 2022, vol. 10, p. 77626, DOI: 10.3897/BDJ.10.E77626.

20. Reshetnyak O.S., Grishanova Yu.S. Mnogoletnie i sezonnye izmeneniya razvitiya fitoplanktona i otsenka sostoyaniya reki Oka v raione g. Dzerzhinsk [Long-term and seasonal changes in phytoplankton development and assessment of the state of the Oka River in the town of Dzerzhinsk area], Voda: khimiya i ekologiya, 2016, no. 3(93), p. 14– 21. (In Russian)

21. Resursy i problemy bezopasnosti meliorativnoi otrasli APK Rossii na sovremennom etape [Resources and security issues of the melioration sector of the Russian agro-industrial complex at the present time], G.V. Ol’garenko, A.A. Ugryumova, O.Yu. Grishaeva et al. (еds.), Moscow, Rusains Ltd. Publ., 2023, 228 p. (In Russian)

22. Saqrane S., Oudra B. CyanoHAB occurrence and water irrigation cyanotoxin contamination: ecological impacts and potential health risks, Toxins, 2009, vol. 1(2), p. 113–22, DOI: 10.3390/toxins1020113.

23. Savitskaya K.L. Otsenka ekologicheskogo sostoyaniya malykh rek na osnove biologicheskogo indeksa makrofitov [Assessment of the ecological state of small rivers based on the biological index of macrophytes], Vestn. Belorusskogo gos. un-ta, Ser. 2, Khimiya. Biologiya. Geografiya, 2014, no. 3, p. 22–27. (In Russian)

24. Savosin E.S., Savosin D.S. Osobennosti zoobentosa mezogumusnykh ozer Respubliki Kareliya, nakhodyashchikhsya v estestvennom sostoyanii [Features of zoobenthos of mesohumus lakes of the Republic of Karelia in a natural state], Biologiya vnutrennikh vod, 2023, no. 2, p. 233– 242, DOI: 10.31857/S0320965223020213. (In Russian)

25. Savushkin S.S., Gzhibovskii S.A. K voprosu ekspluatatsii gidrotehnicheskih sooruzhenij meliorativnogo kompleksa [On the issue of operation of hydraulic structures of the melioration complex], Ekologiya i stroitel’stvo, 2021, no. 2, p. 22–28, DOI: 10.35688/2413-8452-2021-02-002. (In Russian)

26. Semernoi V.P. Sanitarnaya gidrobiologiya [Sanitary hydrobiology], Yaroslavl’, Remder Publ., 2002. 147 p. (In Russian)

27. Shitikov V.K., Rozenberg G.S., Zinchenko T.D. Kolichestvennaya gidroekologiya: metody sistemnoi identifikatsii [Quantitative hydroecology: methods of system identification], Tol’yatti, IEVB RAN Publ., 2003, 463 p. (In Russian)

28. Shumka S., Shumka L., Špoljar M. et al. Evidence of Climate Change and the Conservation Needed to Halt the Further Deterioration of Small Glacial Lakes, Climate, 2024, vol. 12(8), 124, DOI: 10.3390/cli12080124.

29. Sidelev S.I., Babanazarova O.V. Detection of Cyanobacterial Toxins in Water Supply Sources and Tap Water in Some Russian Cities: Searching Producers and Testing Removal Methods, Water Resources, 2020, vol. 47, no. 2, p. 304–314, DOI: 10.1134/S0097807820020189.

30. Sivarajah B., Simmatis B., Favot E.J. et al. Eutrophication and climatic changes lead to unprecedented cyanobacterial blooms in a Canadian sub-Arctic landscape, Harmful Algae, 2021, vol. 105, 102036, DOI: 10.1016/j. hal.2021.102036.

31. Smelova S.S., Lobanova E.A., Prokof’ev V.V. O mestoraspolozhenii istoka reki Repinki v Kolomne [About the location of the source of the Repinka River in Kolomna], Ekologiya i stroitel’stvo, 2018, no. 1, p. 14–20, DOI: 10.24411/2413-8452-2018-00003. (In Russian)

32. Smelova S.S., Zverkov M.S. Changes in Floristic Composition of Meadow Phytocenoses on the Anthropogenically Eroded Slope, IOP Conference Series: Earth and Environmental Science, 2021, p. 012010, DOI: 10.1088/1755-1315/720/1/012010.

33. Szoszkiewicz K., Zbierska J., Jusik S. et al. Makrofitowa Metoda Oceny Rzek. Podre˛cznik metodyczny do oceny i klasyfikacji stanu ekologicznego wo´d płyna˛cych w oparciu o ros´liny wodne. Bogucki Wydawnictwo Naukowe, 2010, Poznan, 82 s.

34. Trajanovska S., Talevska M., Imeri A. et al. Assessment of littoral eutrophication in Lake Ohrid by submerged macrophytes, Biologia, 2014, vol. 69, p. 756–764, DOI: 10.2478/s11756-014-0365-9.

35. Weralupitiya C., Wanigatunge R.P., Gunawardana D. et al. Cyanotoxins uptake and accumulation in crops: phytotoxicity and implications on human health, Toxicon, 2022, vol. 211, p. 21–35, DOI: 10.1016/j.toxicon.2022.03.003.

36. Yuan J., Cao Z., Ma J. et al. Influence of climate extremes on long-term changes in cyanobacterial blooms in a eutrophic and shallow lake, Science of the Total Environment, 2024, vol. 939, 173601, DOI: 10.1016/j.scitotenv.2024.173601.

37. Zeng S., Sun H., Liu Z. et al. Changes in the limiting nutrients and dominant phytoplankton communities of three major European rivers: response to catchment lithologies and human activities, Journal of Hydrology, 2024, vol. 637, 131362, DOI: 10.1016/j.jhydrol.2024.131362.

38. Zueva N.V., Alekseev D.K., Kulichenko A.Yu. et al. Bioindikatsiya i biotestirovanie v presnovodnykh ekosistemakh: uchebnoe posobie [Bioindication and Biotesting in Freshwater Ecosystems], Sankt-Peterburg: Russian State Hydrometeorological University Publ., 2019, 140 p. (In Russian)

39. Zueva N.V., Bobrov A.A. Ispol’zovanie makrofitov v otsenke ekologicheskogo sostoyaniya maloi reki (na primere r. Okhta, g. Sankt-Peterburg) [Use of macrophytes in assessing the ecological state of a small river (case study of the Okhta River, St. Petersburg)], Biologiya vnutrennikh vod, 2018, no. 1, p. 45–54, DOI: 10.7868/ S0320965218010060.(In Russian)

40. Zverkov M.S., Smelova S.S., Akhytrsky S.A. Analiz dannyh batinetricheskoj c’emki i otsenka nekotoryh morfometricheskih harakteristik pruda meliorativnogo naznacheniya s ispolzovaniem instrumentov QGIS i SAGA GIS [The analysis of bathymetric survey data and assessment of some morphometric characteristics of the reclamation pond using QGIS and SAGA GIS tools], International agricultural journal, 2024, vol. 67, no. 6, p. 1–15, DOI: 10.55186/25880209_2024_8_6_29. (In Russian)


Review

For citations:


Zverkov M.S., Smelova S.S. Assessment of the trophic status of a reclamation pond by the fl oristic composition of macrophytes. Lomonosov Geography Journal. 2025;(5):141-152. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.80.5.11

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)