Preview

Вестник Московского университета. Серия 5. География

Расширенный поиск

Миграционные связи и трансформация полиаренов в системе «почвы - природные воды - атмосферный воздух» (обзор)

Аннотация

Обзор и анализ появившихся за два последние десятилетия литературных данных о миграционных связях и характере трансформации полиаренов в системе «почвы - природные воды - атмосферный воздух» показывают, что направленность и интенсивность этих явлений зависят от сочетания многих факторов - климатических условий, физических и химических свойств среды, особенностей и активности микробиоты, характера растительного покрова, а также от источников, характеристик и состава самих полиаренов. Основными общими процессами, в которые вовлекаются ПАУ в почвах, природных водах и атмосфере являются улетучивание этих соединений, осаждение, вымывание, сорбция, фото- и биодеградация. В каждой из указанных сред и при взаимодействии между ними интенсивность указанных процессов разная. При этом разными характеризуются и уровни изученности явлений миграции и трансформации полиаренов в трех средах. Проведенный анализ показывает, что по рассматриваемой теме весьма интенсивно идет накопление новых знаний, формируются новые подходы к исследованиям, привлекаются современные методы получения данных. Вместе с тем в исследовании некоторых вопросов еще остаются белые пятна, имеет место неоднозначность научных оценок, а в ряде случаев и противоречивость получаемых выводов.

Об авторах

А. Д. Наумов
Московский государственный университет имени М.В. Ломоносова
Россия

Студент, географический факультет, кафедра геохимии ландшафтов географии почв.

Москва.



А. Н. Геннадиев
Московский государственный университет имени М.В. Ломоносова
Россия

Профессор, доктор географических наук. географический факультет, кафедра геохимии ландшафтов географии почв.

Москва.



Р. Г. Ковач
Московский государственный университет имени М.В. Ломоносова
Россия

Научный сотрудник, географический факультет, кафедра геохимии ландшафтов географии почв.

Москва.



Список литературы

1. Васильконов Е.С., Завгородняя Ю.А., Демин В.В., Трофимов С.Я. Взаимодействие нафталина и нафтола с органической матрицей почвы // Вестн. Моск. ун-та. Сер. 17. Почвоведение. 2008. № 1. С. 19-24.

2. Габов Д.Н., Безносиков В.А., Кондратенок Б.М. Полициклические ароматические углеводороды в подзолистых и торфянисто-подзолисто-глееватых почвах фоновых ландшафтов // Почвоведение. 2007. № 3. C. 282-291.

3. Геохимия полициклических ароматических углеводородов в горных породах и почвах / под ред. А.Н. Геннадиева и Ю.И. Пиковского. М.: Изд-во Моск. ун-та, 1996. 188 с.

4. Смирнова М.А., Геннадиев А.Н., Чендев Ю.Г. Влияние лесополос на накопление полиаренов в почвах (Белгородская область) // Вестн. Моск. ун-та. Сер. 5. Геогр. № 3. С . 14-21.

5. Хаустов А.П., Редина М.М., Калабин Г.А. Полициклические ароматические углеводороды как индикаторы экологических процессов в аквальных системах. Региональная научно-практическая конференция «Экологическая безопасность территорий и акваторий: региональные и глобальные проблемы» (Керчь, 24-28 октября 2016 г.): материалы. Керчь: КГМТУ, 2016. С. 221-226.

6. Чернянский С.С., Алексеева Т.А., Геннадиев А.Н. Органопрофиль дерново-глеевой почвы с высоким уровнем загрязнения полициклическими ароматическими углеводородами // Почвоведение. 2001. № 11. С. 1312-1322.

7. Amellal N., Portal J.M., Berthelin J. et al. Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil, Applied Geochemistry, 2001, vol. 16(14), p. 1611-1619.

8. Bandowe M., Bigalke M., Kobza J. et al. Sources and fate of polycyclic aromatic compounds (PAHs, oxygenated PAHs and azaarenes) in forest soil profiles opposite of an aluminium plant, Sci. Total Environ., 2018, no. 630, p. 83-95.

9. Bandowe B.A.M., Lueso M.G., Wilcke W. et al. Oxygenated polycyclic aromatic hydrocarbons and azaarenes in urban soils: a comparison of a tropical city (Bangkok) with two temperate cities (Bratislava and Gothenburg), Chemosphere, 2014, no. 107, p. 407-414.

10. Biache C., Ghislain T., Faure P. Low temperature oxidation of a coking plant soil organic matter and its major constituents: an experimental approach to simulate a long term evolution, Journal Hazard. Mater., 2011, no. 188, p. 221-230.

11. Biache C., Mansuy-Huault L., Faure P. et al. Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications, Journal Hazard. Mater., 2014, no. 267, p. 31-39.

12. Cabrerizo A., Galban-Malagon C., Vento del S. et al. Sources and fate of polycyclic aromatic hydrocarbons in the Antarctic and Southern Ocean atmosphere, Glob. Biogeochem. Cycles, 2014, no. 28, p. 1424-1436.

13. Cebron A., Faure P., Lorgeoux C. et al. Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: consequences on biodegradation, Environ. Pollut., 2013, no. 177, p. 98-105.

14. Chung N., Alexander M. Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil, Chemosphere, 2002, no. 48, p. 109-115.

15. Claire F., Sophie A., Johnny G. et al. Innovative combination of tracing methods to differentiate between legacy and contemporary PAH sources in the atmosphere-soil-river continuum in an urban catchment (Orge River, France), Science of the Total Environment, 2019, no. 669, p. 448-458.

16. Clerge A., Le Goff J., Lopez C. et al. Oxy-PAHs: occurrence in the environment and potential genotoxic/mutagenic risk assessment for human health, Critical Reviews in Toxicology, 2019, vol. 49(4), p. 302-328.

17. Gasperi J., Garnaud S., Rocher V. et al. Priority pollutants in surface waters and settleable particles within a densely urbanised area: Case study of Paris (France), Sci. Total Environ., 2009, no. 407, p. 2900-2908.

18. Ghosh U., Zimmerman J.R., Luthy R.G. et al. PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability, Environ. Sci. Technol., 2003, no. 37, p. 2209-2217.

19. Gong M., Wang Y., Fan Y. et al. Polycyclic aromatic hydrocarbon formation during the gasification of sewage sludge in sub- and supercritical water: Effect of reaction parameters and reaction pathways, Waste Management, 2018, no. 72, p. 287-295.

20. Guangshui N., Yunze G., Ruijing L. et al. Occurrence and sources of polycyclic aromatic hydrocarbons in atmosphere and soil from 201, to 2019 in the Fildes Peninsula, Antarctica, Marine Pollution Bulletin, 2020, no. 156, р. 111173.

21. Han Y.M., Bandowe B.A.M., Wei C. et al. Stronger association of polycyclic aromatic hydrocarbons with soot than with char in soils and sediments, Chemosphere, 2015, no. 119, p. 1335-1345.

22. Haritash A.K., Kaushik C.P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review, Journal of Hazardous Materials, 2009, no. 169, p. 1-15.

23. Harner T., Bidleman T.F., Jantunen L.M.M. et al. Soil-air exchange model of persistent pesticides in the United States Cotton Belt, Environ Toxicol. Chem., 2001, no. 20, p. 1612-1621.

24. Hwang H.M., Foster G.D. Characterization of polycyclic aromatic hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia River, Washington, DC, USA, Environ. Pollut., 2006, no. 140, p. 416-426.

25. Josefsson S., Arp H.P.H., Kleja D.B. et al. Determination of polyoxymethylene (POM) - water partition coefficients for oxyPAHs and PAHs, Chemosphere, 2015, no. 119, p. 1268-1274.

26. Keyte I.J., Harrison R.M., Lammel G. et al. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons: A review, Chemical Society Reviews, 2013, vol. 42(24), p. 9333-9391.

27. Lang C., Tao S., Zhang G. et al. Outflow of polycyclic aromatic hydrocarbons from Guangdong, Southern China, Environ. Sci. Technol., 2007, no. 41, p. 8370-8375.

28. Layshock J.A., Wilson G., Anderson K.A. et al. Ketone and quinone-substituted polycyclic aromatic hydrocarbons in mussel tissue, sediment, urban dust, and diesel particulate matrices, Environ Toxicol Chem., 2010, no. 29, p. 2450-2460.

29. Lehto K.M., Puhakka J.A., Lemmetyinen H. Biodegradation of selected UV-irradiated and non-irradiated polycyclic aromatic hydrocarbons (PAHs), Biodegradation, 2003, no. 14, p. 249-263.

30. Lehto K.M., Puhakka J.A., Lemmetyinen H.A. 700 year record of combustion-derived pollution in northern Spain: Tools to identify the Holocene/Anthropocene transition in coastal environments, Sci. Total Environ., 2014, no. 470-471, p. 240-247.

31. Li G., Xia X., Yang Z., Wang R. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China, Environmental Pollution, 2006, vol. 144(,), p. 985-993.

32. Lima A.L.C., Farrington J.W., Reddy C.M. et al. Combustion-derived polycyclic aromatic hydrocarbons in the environment - A review, Environmental Forensics, 2005, no. 6, p. 109-131.

33. Liu G., Zhang G., Li J. Spatial distribution and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) using semi-permeable membrane devices (SPMD) and pine needles in the Pearl River Delta, South Chin, Atmospheric Environment, 2006, vol. 40(17), p. 3134-3143.

34. Liu S., Liu X., Liu M. et al. Levels, sources and risk assessment of PAHs in multi-phases from urbanized river network system in Shanghai, Environ. Pollut., 2016, no. 219, p. 555-567.

35. Lorgeoux C., Moilleron R., Gasperi J. et al. Temporal trends of persistent organic pollutants in dated sediment cores: Chemical fingerprinting of the anthropogenic impacts in the Seine River basin, Paris, Sci. Total Environ., 2015, no. 541, p. 1355-1363.

36. Lundstedt S., White P.A., Lemieux C.L. et al. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites, Hum. Environ., 2007, no. ,6, p. 475-485.

37. Luo X., Mai B., Yang Q. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China, Marine Pollution Bulletin, 2004, vol. 48, no. 11-12, p. 1102-1115.

38. Machala M., Ciganek M., Blaha L. et al. Aryl hydrocarbon receptor-mediated and estrogenic activities of oxygenated polycyclic aromatic hydrocarbons and azaarenes originally identified in extracts of river sediments, Environ. Toxicol Chem., 2001, no. 20, p. 2736-2743.

39. Mallakin A., Dixon D.G., Greenberg B.M. Pathway of anthracene modification under simulated solar radiation, Chemosphere, 2000, vol. 40(12), p. 1435-1441.

40. Mattsson A., Lundstedt S., Stenius U. Exposure of HepG2 cells to low levels of PAH-containing extracts from contaminated soils results: critical reviews in toxicology in unpredictable genotoxic stress responses, Environ. Mol. Mutagen., 2009, no. 50, p. 337-348.

41. Miller J.S., Olejnik D. Photolysis of polycyclic aromatic hydrocarbons in water, Wat. Res., 2001, vol. 35(1), p. 233-243.

42. Minkina T., Sushkova S., Yadav B.K. et al. Accumulation and transformation of benzo[a]pyrene in Haplic Chernozem under artificial contamination, Environmental Geochemistry and Health, 2020, vol. 42(8), p. 2485-2494.

43. Mojiri A., Zhou J.L., Ohashi A. et al. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments, Science of The Total Environment, 2019, no. 696, p. 133971.

44. Montuori P., Aurino S., Garzonio F. et al. Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in water and sediments from Tiber River and estuary, Italy, Sci. Total Environ., 2016, no. 566-567, p. 1254-1267.

45. Mu Q., Shiraiwa M., Octaviani M. et al. Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs, Science advances, 2018, vol. 4(3), DOI: 10.1126/sciadv.aap7314.

46. Niu J., Chen J., Martens D. et al. The role of UV-B on the degradation of PCDD/Fs and PAHs sorbed on surfaces of spruce (Picea abies (L.) Karst.) needles, Sci. Total Environ., 2004, no. 322, p. 231-241.

47. Pacyna J.M., Breivik K., Munch J. et al. European atmospheric emissions of selected persistent organic pollutants, 1970-1995, Atmos. Environ., 2003, no. 37, p. 119-131.

48. Quantin C., Joner E.J., Portal J.M. et al. PAH dissipation in a contaminated river sediment under oxic and anoxic conditions, Environ. Pollut., 2005, no. 134, p. 315-322.

49. Ravindra K., Sokhi R., Grieken van R. et al. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation, Atmospheric Environment, 2008, vol. 42(13), p. 2895-2921.

50. Richter H., Howard J.B. Formation of polycyclic aromatic hydrocarbons and their growth to soot - a review of chemical reaction pathways, Prog. Energy Combust. Sci., 2000, no. 26, p. 565-608.

51. Ringuet J., Albinet A., Leoz-Garziandia Е. et al. Reactivity of polycyclic aromatic compounds (PAHs, NPAHs and OPAHs) adsorbed on natural aerosol particles exposed to atmospheric oxidants, Atmospheric Environment, 2012, no. 61, р. 15-22.

52. Sarria-Villa R., Ocampo-Duque W., Paez M. et al. Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment, Science of the Total Environment, 2016, no. 540, p. 455-465.

53. Schmidt M., Noack A. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges, Glob. Biogeochem. Cycles, 2000, vol. 14(3), p. 777-793.

54. Shiraiwa M., Li Y., Tsimpidi A.P. Global distribution of particle phase state in atmospheric secondary organic aerosols, Nat. Commun., 2017, vol. 8(1), p. 15002.

55. Simcik M., Offenberg J. Polycyclic aromatic hydrocarbons in the Great Lakes, Hdb. Env. Chem., 2006, no. 5, p. 307353.

56. Su P., Zhanga W., Hao Y. et al. Polycyclic aromatic hydrocarbon contaminations along shipping lanesand implications of seafarer exposure: Based on PAHs in ship surface films and a film-air-water fugacity model, Science of the Total Environment, 2020, no. 731, p. 138943.

57. Sushkova S., Minkina T., Deryabkina I. et al. Environmental pollution of soil with PAHs in energy producing plants zone, Science of the Total Environment, 2019, no. 655, p. 232-241.

58. Vasilakos C., Levi N., Maggos T. et al. Gas-particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens, Greece, Journal Hazard. Mater., 2007, no. 140, p. 45-51.

59. Wang Q., Wang X., Feng W. et al. Diffusion of polycyclic aromatic hydrocarbons between water and sediment and their ecological risks in Wuhu city, Yangtze River Delta urban agglomerations, China: Applied Geochemistry, 2020, vol. 119(4), p. 104627.

60. Wang W., Simonich S., Giri B. et al. Atmospheric concentrations and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, North China, Science of The Total Environment, 2011, vol. 409, no. 15, p. 2942-2950.

61. Wang Z., Na G., Ma X. et al. Occurrence and gas/particle partitioning of PAHs in the atmosphere from the North Pacific to the Arctic Ocean, Atmospheric Environment, 2013, no. 77, p. 640-646.

62. Wilcke W. Polycyclic аготайе hydrocarbons (PAHs) in soil: A review, Journal Plant Nutr. Soil Sci., 2000, no. 163, p. 229-248.

63. Wilcke W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil, Geoderma, 2007, no. 141, p. 157166.

64. Wilcke W., Bandowe B.A.M., Lueso M.G. et al. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs, azaarenes) in soils along a climosequence in Argentina, Sci. Total Environ., 2014, no. 473-474, p. 317-325.

65. Xia X., Li G., Yang Z. et al. Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: importance of active oxygen, Environ. Pollut., 2009, no. 157, p. 1352-1359.

66. Xu J., Yan J., Wang X. et al. Photochemical reaction of chrysene in acetonitrile/water, Polycyclic Aromatic Compounds, 2004, vol. 24, no. 4-5, p. 249-256.

67. Yang Y., Ligouis B., Pies C. et al. Identification of carbonaceous geosorbents for PAHs by organic petrography in river floodplain soils, Chemosphere, 2008, no. 71, p. 2158-2167.

68. Zhang Y., Tao S., Shen H. et al. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population, Proceedings of the National Academy of Sciences of the USA, 2009, vol. 106(50), p. 21063-21067.

69. Zhang J., Liu G., Wang R. et al. Polycyclic aromatic hydrocarbons in the water-SPM-sediment system from the middle reaches of Huai River, China: Distribution, partitioning, origin tracing and ecological risk assessment, Environmental Pollution, 2017, no. 230, p. 61-71.

70. Zhang R., Han M., Yu K. et al. Distribution, fate and sources of polycyclic aromatic hydrocarbons (PAHs) in atmosphere and surface water of multiple coral reef regions from the South China Sea: A case study in spring-summer, Journal of Hazardous Materials, 2021, no. 412, p. 125214.

71. Zhao N., Ju F., Pan H. et al. Molecular dynamics simulation of the interaction of water and humic acid in the adsorption of polycyclic aromatic hydrocarbons, Environmental Science and Pollution Research, 2020, no. 27, p. 25754-25765.

72. Zhao S., Li Y., Cao Z. et al. Sorption-desorption mechanisms and environmental friendliness of different surfactants in enhancing remediation of soil contaminated with polycyclic aromatic hydrocarbons, Journal of Soils and Sediments, 2020, vol. 20, no. 7, p. 2817-2828.

73. Zheng N., Zhang C., Wang Z. et al. Performance and potential mechanism of transformation of polycyclic aromatic hydrocarbons (PAHs) on various iron oxides, Journal of Hazardous Materials, 2021, no. 403, p. 123993.

74. Zhou S., Shiraiwa M., McWhinney R.D. et al. Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol, Faraday Discuss, 2013, no. 165, p. 391-406.


Рецензия

Для цитирования:


Наумов А.Д., Геннадиев А.Н., Ковач Р.Г. Миграционные связи и трансформация полиаренов в системе «почвы - природные воды - атмосферный воздух» (обзор). Вестник Московского университета. Серия 5. География. 2022;(3):18-30.

For citation:


Naumov A.N., Gennadiev A.N., Kovach R.G. Migration links and transformation of polyarenes in soil ‒ natural water ‒ atmospheric air system (a review). Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2022;(3):18-30. (In Russ.)

Просмотров: 142


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)