Environmental changes in the western part of the Putorana Plateau over the past 4,000 years
Abstract
The paper presents a detailed reconstruction of vegetation and environmental conditions in the western part of the Putorana Plateau over the past 4,000 years. New paleobotanical data were obtained, as well as the results of the analysis of macroscopic charcoal particles in two cores of bottom sediments from the lakes located in forest and tundra belts of the plateau. Cores chronology is based on detailed AMS radiocarbon dating, and the uppermost layers of cores are dated by 137Cs/210Pb analysis. According to the data obtained, vegetation pattern in the study area was close to modern one over the past four millennia. However, between 3.1 and 2.5 ka BP (thousands of calendar years ago) an increase of the area of larch, spruce and birch forests and woodlands was recorded in the lower belts of the plateau, apparently in response to the climate warming.
During the same period the number and intensity of fires in the study area also increased. The subsequent cooling led to the gradual degradation of woodlands, almost complete disappearance of spruce from the forest communities, and the expansion of tundra communities. Macroscopic charcoal data for the bottom sediments indicate rather low fire activity since 2.5 ka BP up until recent 200 years. No input of macroscopic charcoal particles to the lakes was recorded for the time interval of 1.1–0.55 ka BP. A sharp increase of concentration of macroscopic charcoal particles in the upper horizons of bottom sediments that have accumulated over the recent 200 years up to the maximum values for the entire studied period reflects a growing fire activity that has no analogues over the past four thousand years.
About the Authors
E. Yu. NovenkoRussian Federation
Leading Scientific Researcher, D.Sc. in Geography, Department of Quaternary Research, Senior Scientific Researcher
N. G. Mazei
Russian Federation
Senior Scientific Researcher , Ph.D. in Biology, Department of Physical Geography and Landscape Science
D. A. Kupriyanov
Russian Federation
Leading Engineer, Department of Physical Geography and Landscape Science
O. V. Rudenko
Russian Federation
Associate Professor, Ph.D. in Geography, Department of Geography, Ecology and General Biology
V. A. Batalova
Russian Federation
Ph.D. Student, Department of Palynology and Climate Dynamics
E. G. Nagornaya
Russian Federation
Leading Engineer, Department of Physical Geography and Landscape Science
References
1. Andreev A., Tarasov P., Schwamborn G., Ilyashuk B., Ilyashuk E., Bobrov A., Klimanov V., Rachold V., Hubberten H.W. Holocene paleoenvironmental records from Nikolay Lake, Lena River Delta, Arctic Russia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2004b, vol. 209, p. 197–217.
2. Andreev A.A., Klimanov V.A. Quantitative Holocene climatic reconstruction from Arctic Russia, Journal of Paleolimnology, 2000, vol. 24, p. 81–91.
3. Andreev A.A., Tarasov P.E., Klimanov V.A., Melles M., Lisitsyna O.M., Hubberten H.-W. Vegetation and climate changes around the Lama Lake, Taymyr Peninsula, Russia during the Late Pleistocene and Holocene, Quaternary International, 2004a, vol. 122, p. 69–84, DOI: 10.1016/j.quaint.2004.01.032.
4. Andreev A.A., Tarasov P.E., Siegert C., Ebel T., Klimanov V.A., Melles M., Bobrov A.A., Dereviagin A.Yu., Lubinski D.J., Hubberten H.-W. Late Pleistocene and Holocene vegetation and climate on the northern Taymyr Peninsula, Arctic Russia, Boreas, 2003, vol. 32, p. 484–505, DOI: 10.1080/03009480310003388.
5. Antropogen Tajmyr a [Anthropogen of the Taimyr Peninsula]. Moscow, Nauka Publ., 1982, 184 р. (In Russian)
6. Barhoumi C., Ali A.A., Peyron O., Dugerdil L., Borisova O., Golubeva Yu., Subetto D., Kryshen A., Drobyshev I., Ryzhkova N., Joannin S. Did long-term fire control the coniferous boreal forest composition of the northern Ural region (Komi Republic, Russia)? J. Biogeogr., 2020, vol. 47, p. 2426–2441, DOI: 10.1111/jbi.13922.
7. Barhoumi C., Peyron O., Joannin S., Subetto D., Kryshen A., Drobyshev I., Girardin M.P., Brossier B., Paradis L., Pastor T., Alleaume S., Ali A.A. Gradually increasing forest fire activity during the Holocene in the northern Ural region (Komi Republic, Russia), The Holocene, 2019, vol. 29(12), p. 1906–1920, DOI: 10.1177/0959683619865593.
8. Biskaborn B.K., Herzschuh U., Zibulski R., Diekmann B., Bolshiyanov D., Savelieva L. Late Holocene thermokarst variability inferred from diatoms in a lake sediment record from the Lena delta, Siberian Аrctic, Journal of Paleolimnology, 2013, vol. 49(2), p. 155–170.
9. Biskaborn B.K., Subetto D.A., Savelieva L.A., Vakhrameeva P.S., Hansche A., Herzschuh U., Klemm J., Heinecke L., Pestryakova L.A., Meyer H., Kuhn G., Diekmann B. Late Quaternary vegetation and lake system dynamics in north-eastern Siberia: Implications for seasonal climate variability, Quaternary Science Reviews, 2016, vol. 147, p. 406–421, DOI: 10.1016/j.quascirev.2015.08.014.
10. Blaauw M., Christen J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Analysis, 2011, vol. 6(3), p. 457–474.
11. Bol’shiyanov D.Yu., Savel’eva L.A., Pestryakova L.A., Vahrameeva P.S., Baranskaya A.V. Metodika izvlecheniya paleogeograficheskoj informacii iz donnyh otlozhenij arkticheskogo ozera Sevast’yan-Kyuele [Methods of extracting paleogeographic information from the bottom sediments of the arctic Sevastian-Kuele Lake], Izvestiya Russkogo geograficheskogo obshchestva, 2013, no. 145(2), p. 49–65. (In Russian)
12. APE project members Holocene paleoclimate data from the Arctic: testing models of global climate change, Quaternary Sci. Rev., 2001, vol. 20, p. 1275–1287.
13. Conedera M., Tinner W., Neff C., Meurer M., Dickens A.F., Krebs P. Reconstructing past fire regimes: Methods, applications, and relevance to fire management and conservation, Quaternary Science Reviews, 2009, vol. 28, no. 5–6, p. 555–576.
14. Flora Putorana: materialy k poznaniyu osobennostej sostava i genezisa gornyh subarkt. flor Sibiri [Flora of the Putorana Plateau: materials for understanding the composition and genesis of mountain subarctic floras of Siberia], Malysheva L.I. (ed.), Novosibirsk, Nauka Publ., 1976, 245 p. (In Russian)
15. Gajewski K. Climate, fire and vegetation history at treeline east of Hudson Bay, northern QuEbec, Quaternary Science Reviews, 2021, vol. 254, 106794, DOI: 10.1016/j.quascirev.2021.106794.
16. Grimm Е. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, Computers, Geosciences, 1987,vol. 13, p. 13–35, DOI: 10.1016/0098-3004(87)90022-7.
17. Hantemirov R., Shiyatov S.G. A continuous multimillennial ring-width chronology in Yamal, northwestern Siberia, The Holocene, 2002, vol. 12(6), p. 717–727.
18. Hantemirov R.M., Gorlanova L.A., Surkov A.Yu., Shiyatov S.G. Ekstremal›nye klimaticheskie sobytiya na Yamale za poslednie 4100 let po dendrohronologicheskim dannym [Extreme climatic events in the Yamal Peninsula over the last 4100 years according to dendrochronological data], Izvestiya RAN. Ser. geograficheskaya, 2011, no. 2, p. 89–102. (In Russian)
19. Heim R.J., Bucharova A., Brodt L., Kamp J., Rieker D., Soromotin A.V., Yurtaev A., Hölzel N. Post-fire vegetation succession in the Siberian subarctic tundra over 45 years, Science of The Total Environment, 2021, vol. 760, 143425, DOI: 10.1016/j.scitotenv.2020.143425.
20. Herzschuh U., Pestryakova L.A., Savelieva L.A., Heinecke L., Böhmer T., Biskaborn B.K., Andreev A., Ramisch A., Shinneman A.L.C., Birks H.J.B. Siberian larch forests and the ion content of thaw lakes form a geochemically functional entity, Nature Communications, 2013, vol. 4, p. 2408, DOI: 10.1038/ncomms3408.
21. Higuera P.E., Peters M.E., Brubaker L.B., Gavin D.G. Understanding the origin and analysis of sediment-charcoal records with a simulation model, Quaternary Science Reviews, 2007, vol. 26, no. 13–14, p. 1790–1809.
22. Isachenko A.G. Landshafty SSSR [Landscapes of the USSR], Leningrad, Leningrad University Press, 1985, 320 р. (In Russian)
23. Issledovanie prirody Tajmyra. Vypusk 5. Chetvertichnaya istoriya, klimat, pochvy, flora i rastitel’nost’, zhivotnyj mir [Study of the nature of Taimyr. Issue 5. Quaternary history, climate, soils, flora and vegetation, wildlife], R.A. Ziganshina, E.B. Pospelovoj (eds.), Krasnoyarsk, Sukachev Institute of Forest SB RAN, 2006, 190 p. (In Russian)
24. Kharuk V.I., Ranson K.J., Dvinskaya M.L., Im S.T. Wildfires in northern Siberian larch dominated communities, Environmental Research Letters, 2011, vol. 6, p. 045208, DOI: 10.1088/1748-9326/6/4/045208.
25. Klemm J., Herzschuh U., Pestryakova L.A. Vegetation, climate and lake changes over the last 7000 years at the boreal treeline in north-central Siberia, Quaternary Science Reviews, 2016, vol. 147, p. 422–434, DOI: 10.1016/j.quascirev.2015.08.015.
26. Klemm J., Herzschuh U., Pisaric M.F.J., Telford R.J., Heim B., Pestryakova L.A. A pollen-climate transfer function from the tundra and taiga vegetation in Arctic Siberia and its applicability to a Holocene record, Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, vol. 386, p. 702–713, DOI: 10.1016/j.palaeo.2013.06.033.
27. Lozhkin A., Anderson P. Late quaternary lake records from the Anadyr lowland, Central Chukotka (Russia), Quaternary Science Reviews, 2013, vol. 68, p. 1–16.
28. Lozhkin A.V., Anderson P.M. Features of the formation of lakes in the cryogenic regions of the upper Kolyma, Northeast Siberia, The Bulletin of the North-East Scientific Center, 2020, vol. 5, p. 13–23.
29. Mooney S., Tinner W. The analysis of charcoal in peat and organic sediments, Mires and Peat, 2011, vol. 7, p. 1–18. Moore P.D., Webb J.A., Collinson M.E. Pollen Analysis. Blackwell, Oxford, 1991, 216 p.
30. Müller S., Tarasov P.E., Andreev A.A., Diekmann B. Late Glacial to Holocene environments in the present-day coldest region of the Northern Hemisphere inferred from a pollen record of Lake Billyakh, Verkhoyansk Mts, NE Siberia, Climate of the Past Discussions, 2009, vol. 5, p. 73–84.
31. Murton J.B., Edwards M.E., Lozhkin A.V., Korzun J.A., Tsygankova V.I., Anderson P.M., Savvinov G.N., Danilov P.P., Boeskorov V., Bakulina N., Bondarenko O.V., Cherepanova M.V., Goslar T., Grigoriev S., Gubin S.V., Lupachev A.V., Zanina O.G., Tikhonov A., Vasilieva G.V. Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana uplands, Northeast Siberia, Quaternary Research, 2017, vol. 87, no. 2, p. 314–330.
32. Nazarova L., Lüpfert H., Subetto D., Pestryakova L., Diekmann B. Holocene climate conditions in central Yakutia (Eastern Siberia) inferred from sediment composition and fossil chironomids of Lake Temje, Quaternary International, 2013, vol. 290–291, p. 264–274, DOI: 10.1016/j.quaint.2012.11.006.
33. Nepomilueva N.I., Duryagina D.A. K istorii listvennichnikov srednego Timana v golocene (Komi ASSR) [On the Holocene history of larch forests in the Middle Timan (Komi ASSR)], Botanicheskij zhurnal, 1990, no. 3, p. 326–335. (In Russian)
34. Niemeyer B., Klemm J., Pestryakova L.A., Herzschuh U. Relative pollen productivity estimates for common taxa of the northern Siberian Arctic, Review of Palaeobotany and Palynology, 2015, vol. 221, p. 71–82, DOI: 10.1016/j.revpalbo.2015.06.008.
35. Paleoklimat polyarnyh oblastej Zemli v golocene [The Holocene paleoclimate of the Earth’s polar regions], D.Yu. Bol’shiyanova, S.R. Verkulicha (eds.), St. Petersburg, AANII, 2019, 204 p. (In Russian)
36. Pestryakova L.A. Diatomovye kompleksy ozer Yakutii [Diatom complexes of lakes in Yakutia], Yakutsk, Yakutsk State University by M.K. Ammosova Publ., 2008, 178 p. (In Russian)
37. Pestryakova L.A., Herzschuh U., Wetterich S., Ulrich M. Presentday variability and Holocene dynamics of permafrost- affected lakes in Central Yakutia (Eastern Siberia) inferred from diatom records. Quaternary Science Reviews, 2012, vol. 51, р. 56–70.
38. Renberg I. The HON-Kajak sediment corer, Journal of Paleolimnology, 1991, vol. 6, p. 167–170.
39. Self A.E., Jones V.J., Brooks S.J. Late Holocene environmental change in arctic western Siberia, The Holocene, 2015, vol. 25, p. 150–165, DOI: 10.1177/0959683614556387.
40. Subetto D.A., Nazarova L.B., Pestryakova L.A., Syryh L.S., Andronikov A.V., Biskaborn B., Dikmann B., Kuznecov D.D., Sapelko T.V., Grekov I.M. Paleolimnologicheskie issledovaniya v rossijskoj chasti Severnoj Evrazii: obzor [Paleolimnological studies in the Russian part of Northern Eurasia: review], Sibirskij ekologicheskij zhurnal, 2017, no. 4, p. 369–380. (In Russian)
41. Syrykh L.S., Nazarova L.B., Hercshu U., Subetto D.A., Grekov I.M. Rekonstrukciya paleoekologicheskih i paleoklimaticheskih uslovij golocena na yuge Tajmyra po rezul’tatam analiza ozernyh donnyh otlozhenij [Reconstruction of paleoecological and paleoclimatic conditions of the Holocene in the southern Taimyr Peninsula according to the results of the analysis of lake bottom sediments], Sibirskij ekologicheskij zhurnal, 2017, no. 4, p. 417–426. (In Russian)
42. Udachin V.N., Bol›shiyanov D.Yu., Votyakov S.L., Kiseleva D.V., Hvorov P.V., Aminov P.G., Ivanov Yu.K. Pervyedannye o geohimii mikroelementov v donnyh otlozheniyah arkticheskogo ozera Kenteturku (poluostrov Tajmyr) [The first data on the geochemistry of trace elements in the bottom sediments of the arctic Kenteturku Lake (the Taimyr Peninsula)], Trudy Instituta geologii i geohimii im. akademika A.N. Zavarickogo, 2013, no. 160, p. 356–359. (In Russian)
43. Ushnickaja L.A., Pestrjakova L.A., Subetto D.A., Troeva E.I. Morfometricheskaja harakteristika ozer Leno-Amginskogo mezhdurech’ja [Morphometric characteristics of lakes within the Lena-Amga interfluve], Nauka i Obrazovanie, 2014, no. 4(76), р. 71–76. (In Russian)
44. Vachula R.S., Sae-Lim J., Russell J.M. Sedimentary charcoal proxy records of fire in Alaskan tundra ecosystems, Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, vol. 541, 109564, DOI: 10.1016/j.palaeo.2019.109564.
45. Yanchenko Z.A. Analiz lokal’noj flory okrestnostej oz. Lama (Severo-Zapad plato Putorana) [Analysis of the local flora of the Lama Lake surroundings (North-West of the Putorana Plateau)], Vestnik KrasGAU, 2008. no. 6, p. 97–102. (In Russian)
46. Yanchenko Z.A., Romanov A.A., Gerasimenko V.Ya. Geodinamicheskie processy, morfologiya, landshaft i osobennosti vysotnoj poyasnosti gor Putorana [Geodynamic processes, morphology, landscape and specific features of the altitudinal zonality of the Putorana Mountains], Gornyj informacionno-analiticheskij byulleten’ (nauchno- tekhnicheskij zhurnal), 2010, no. 6, p. 355–365. (In Russian)
47. AlgaeBase. National University of Ireland, Galway, 2020, URL: https://www.algaebase.org (access date 03.03.2021).
48. IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, URL: https://www.ipcc.ch/srocc/cite-report/ (access date 28.02.2021).
49. The Plant List. Version 1.1, 2013, URL: http://www.theplantlist.org/ (access date 03.03.2021).
Review
For citations:
Novenko E.Yu., Mazei N.G., Kupriyanov D.A., Rudenko O.V., Batalova V.A., Nagornaya E.G. Environmental changes in the western part of the Putorana Plateau over the past 4,000 years. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2022;(1):152-166. (In Russ.)