High-resolution modeling of hydrometeorological fi elds over the Kara Sea coastal regions with irregular coastline
Abstract
Arctic coastal zones are characterized by diverse severe hydrometeorological phenomena including high wind speeds, stormy waves and surges. Abundance of islands and mountain ranges, and rugged coastline in the Kara Sea contribute to the formation of mesoscale atmospheric circulations that largely determine the patternof coastal currents. The Arctic observational network is not dense enough to reproduce and investigate hydrometeorological characteristics; therefore the paper is based on high-resolution modeling of wind, waves, sea level and currents. Experiments were conducted with COSMO-CLM non-hydrostatic mesoscale atmospheric model for the Kara Sea region with ~12 and ~3 km resolutions. In contrast with global NCEP/CFSR reanalysis the model with 3 km resolution could reproduce such phenomena as tip jets, downslope windstorms and cyclonic chains in the skerries of different scales. This is an important reason for utilizing the COSMO-CLM wind speed fields as forcing data for modeling waves and surges. The WAVEWATCH III model was applied for wave simulation; and the ADCIRC model was used for sea level and currents simulation. During on-shore wind conditions there are almost no differences between wave simulations using high-resolution wind speed and NCEP/CFSR reanalysis. However, the impact of local wind field is significant when off-shore wind is observed. Sea level modeling within narrow bays and creeks using high-resolution wind speed fields has shown significant differences from the experiments based on the NCEP/CFSR reanalysis. Maximal calculated Kara Sea surges are up to 2,5 m and are noticed at the southern part of the Gulf of Ob. Surges in the Gulf of Ob are formed two times more often than in the Baydaratskaya Bay. Long-term trends in the number of surges are opposite, i.e. minimal number of surges was in the Baydaratskaya Bay during the 1995–2005, while maximal number of surges was in the Gulf of Ob during the same period.Keywords: high-resolution hydrodynamic modelling, wind waves, wind surges, COSMO-CLM, WAVEWATCH III, ADCIRC, Kara Sea.
Keywords
About the Authors
V. S. PlatonovRussian Federation
Department of meteorology and climatology, Ph.D., Research Fellow
S. A. Myslenkov
Russian Federation
Department of oceanology, Ph.D., Research Fellow
V. S. Arkhipkin
Russian Federation
Department of oceanology, Ph.D., Associate Professor
A. V. Kislov
Russian Federation
Department of meteorology and climatology, Professor
References
1. Arakawa A., Lamb V.R. Computational design of the basic dynamical processes of the UCLA general circulation model, Meth. in Comp. Phys., 1977, no. 17, p. 173–265.
2. Ashik I.M. Chislennye reaschety i prognozy kolebaniy urovnya morya i splochennosti l’dov v moryakh Laptevykh i Vostochno-Sibirskom. [Numerical calculations and forecasts of the sea level oscillations and ice concentration over the Laptev and the East Siberian seas] In: “Nauchnye rezultaty ‘ekspedizii LAPEKS-93”, Saint Petersburg, Gidrometeoizdat Publ., 1994, p. 199–209. (In Russian)
3. Ashik I.M. Chislennye reaschety i prognozy kolebaniy urovnya, techeniy i dreifa l’da na shel’fe morey Zapadnogo sektora Arktiki [Numerical calculations and forecasts of the sea level oscillations, currents and ice drift over the shelf of the Western Arctic seas], Navigatsiya i gidrografiya, 1997, no. 4, p. 85–94. (In Russian)
4. Ashik I.M., Proshutinskiy A.Yu., Stepanov V.A. Nekotorye rezultaty i perspektivy chislennykh prognozov sgonnonagonnykh kolebaniy urovnya arkticheskikh morey [Some results and perspectives of the numerical forecasting of surge oscillation of the Arctic seas level], Meteorologiya I Gidrologiya, 1989, no. 8, p. 74–82. (In Russian)
5. Bekryaev R.V., Polyakov I.V., Alexeev V.A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming, J. of Clim., 2010, vol. 23, no. 14, p. 3888–3906, DOI: 10.1175/2010JCLI3297.1.
6. Blain C.A., Preller R.H., Rivera A.P. Tidal Prediction Using the Advanced Circulation Model (ADCIRC) and a Relocatable PC-based System, Oceanography, 2002, vol. 15, no. 1, p. 77–87.
7. Böhm U., Kücken M., Ahrens W., Block A., Hauffe D., Keuler K., Rockel B., Will A. CLM – The Climate Version of LM: Brief Description and Long-Term Applications, COSMO Newsletters, 2006, vol. 6, p. 225–235.
8. Borisov E.V., Rayevskiy D.N. Sravnenie i ispol’zovanie nadlyudeniy i modelirovaniya urovnya v Karskom more. [Comparison and use of the sea level observations and modelling at the Kara sea], Arktika: Ekologiya i ekonomika, 2016, no. 4, vol. 24, p. 72–79. (In Russian)
9. Bromwich D., Wilson A.B., Bai L., Liu Z., Barlage M., Shih C.-F., Maldonado S., Hines K.M., Wang S.-H., Woollen J., Kuo B., Lin H.-C., Wee T.-K., Serreze M.-C., Walsh J.E. The Arctic System Reanalysis, Version 2, Bull. of Amer. Met. Soc., 2018, vol. 99, p. 805–828, DOI: 10.1175/BAMS-D-16-0215.1.
10. Cohen J., Pfeiffer K., Francis J.A. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States, Nat. Comm., 2018, vol. 9, no. 1, p. 1–12, DOI: 10.1038/s41467-018-02992-9.
11. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., Berg de van L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., Rosnay de P., Tavolato C., Thépaut J.-N., Vitart F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. of the R. Met. Soc., 2011, vol. 137, no. 656, p. 553–597, DOI: 10.1002/qj.828.
12. Dianskiy N.A., Fomin V.V., Kabatchenko I.M. Vosproizvedenie tsirkulyatsii Karskogo i Pechorskogo morey s pomoshchyu sistemy operativnogo diagnoza i prognozamorskoy dinamiki [Kara and Pechora seas circulation reproduction using the operational system of sea dynamics diagnosis and forecast], Arktika: Ekologiya i ekonomika, 2014, no. 1, vol. 13, p. 57–73. (In Russian)
13. Dianskiy N.A., Panasenkova I.I., Fomin V.V. Issledovanie otklika verkhnego sloya Barentseva morya na prokhozhdenie intensivnogo polyarnogo tsiklona v nachale yanvarya 1975 goda [Investigation of the Barents Sea upper layer response on the intense polar low passage at the beginning of January, 1975], Morskoy gidrofizicheskiy zhurnal, 2019, no. 35, vol. 6, p. 530–548, DOI: 10.22449/0233–7584–2019–6–530–548. (In Russian)
14. Dianskiy N.A., Panasenkova I.I., Fomin V.V., Gusev A.V., Kabatchenko I.M. Sistema operativnykh i retrospektivnykh raschetov gidrometeorologicheskikh parametrov i morskogo l’da dlya zapadnykh morei rossiyskoy Arktiki [System of operational and retrospective calculations of hydrometeorological parameters and sea ice for western seas of the Russian Arctic], Morskie informatsionno-upravlyayushchie sistemy, 2020, no. 17, vol. 1, p. 44–51. (In Russian)
15. Dobrovolsky A.D., Zalogin B.S. Morya SSSR. [Seas of the USSR], Moscow, Moscow State University Publ., 1982, 192 p. (In Russian)
16. Duan C., Dong S., Wang Z. Wave climate analysis in the ice-free waters of Kara Sea Region, Stud. Mar. Sci., 2019, vol. 30, p. 100719, DOI: 10.1016/j.rsma.2019.100719.
17. Francis J.A., Vavrus S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geoph. Res. Lett., 2012, vol. 39, no. 6, L06801, DOI: 10.1029/2012GL051000.
18. Gal-Chen T., Somerville R.C.J. On the use of a coordinate transformation for the solution of the Navier-Stokes equations, J. of Comp. Phys., 1975, vol. 17, no. 2, p. 209–228, DOI: 10.1016/0021-9991(75)90037-6.
19. Hersbach H., Bell B., Berrisford P., Hirahara Sh., Horányi A., Muñoz-Sabater J, Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., Chiara de G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R. J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez Ph., Lupu Cr., Radnoti G., de Rosnay P., Rozum I., Vamborg Fr., Villaume S., Thépaut J-N. The ERA5 Global Reanalysis, Quarterly Journal of Royal Meteorological Society, 2020, vol. 146, iss. 730, p.1999–2049, DOI: 10.1002/qj.3803.
20. Ivanova A.A., Arkhipkin V.S., Myslenkov S.A., Shevchenko G.V. Modelirovanie shtormovykh nagonov v pribrezhnoy zone o. Sakhalin [Storm surges modelling in the Sakhalin Island coastal zone], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2015, no. 3, p. 41–49. (In Russian)
21. Johannessen O.M., Kuzmina S., Bobylev L.P. Miles M.W. Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalization, Tellus, 2016, vol. 68A, 28234., DOI: 10.3402/tellusa.v68.28234.
22. Kislov A.V., Rivin G.S., Platonov V.S., Varentsov M.I., Rozinkina I.A., Nikitin M.A., Chumakov M.M. Mezomasshtabnoe modelirovanie ekstremalnykh vetrov nad Okhotskim morem i ostrovom Sakhalin. [Mesoscale modelling of the extreme wind speeds over the Sea of Okhotsk and Sakhalin Island], Izvestiya Rossiyskoy Akademii Nauk. Fizika Atmosfery i okeana, 2018, no. 54, vol. 4, p. 381–385, DOI: 10.1134/S0002351518040090. (In Russian)
23. Korablina A.D., Kondrin A.T., Arkhipkin V.S. Modelirovanie nagonov v Belom i Barentsevom moryakh za period 1979–2015 gg. [Surges modelling in the White and the Barents seas during 1979-2015 period], Trudy Gidrometeorologicheskogo nauchno-issledovatelskogo tsentra Rossiyskoy Federatsii, 2017, no. 364, p. 144–158. (In Russian)
24. Li J., Ma Y., Liu Q., Zhang W., Guan C. Growth of wave height with retreating ice cover in the Arctic, Cold Reg. Sci. Technol., 2019, vol. 164, p. 102790, DOI: 10.1016/j.coldregions.2019.102790.
25. Moore G.W.K., Renfrew I.A. Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland, J. of Clim., 2005, vol. 18, no. 18, p. 3713–3725, DOI: 10.1175/JCLI3455.1.
26. Myslenkov S., Platonov V., Kislov A., Silvestrova K., Medvedev I. Thirty-Nine-Year Wave Hindcast, Storm Activity, and Probability Analysis of Storm Waves in the Kara Sea, Russia, Water, 2021, vol. 13, no. 648, DOI: 10.3390/w13050648.
27. Myslenkov S.A., Markina M.Yu. Osobennosti rasprostraneniya potoka volnovoi energii v Karskom more [Features of wave energy flux propagation within the Kara Sea], Gidrometeorologicheskie issledovaniya i prognozy, 2018, no. 3, vol. 369, p. 119–131.
28. Myslenkov S.A., Stolyarova E.V., Markina M.Yu., Kiseleva S.V., Arkhipkin V.S., Gorlov A.A., Umnov P.M. Sezonnaya I mezhgodovaya izmenchivost’ potoka volnovoi energii v Barentsevom more. [Seasonal and interannual variability of the wave energy flux within the Barents Sea], Alternativnaya energetika i ekologiya, 2017, no. 19–21, vol. 231–233, p. 36–48, DOI: 10.15518/isjaee.2017.19-21.036-048. (In Russian)
29. Outten S.D., Esau I. A link between Arctic sea ice and recent cooling trends over Eurasia, Clim. Changes, 2012, vol. 110, no. 3–4, p. 1069–1075, DOI: 10.1007/s10584-011-0334-z.
30. Pavlova A.V., Arkhipkin V.S., Myslenkov S.A. Storm surge modelling in the Caspian Sea using an unstructured grid, Russian Journal of Earth Sciences, 2020, vol. 20, no. 1, p. ES1006, DOI: 10.2205/2019ES000688.
31. Petoukhov V., Semenov V.A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents, J. of Geoph. Res. Atm., 2010, vol. 115, no. D21, DOI: 10.1029/2009JD013568.
32. Platonov V., Kislov A. High-resolution COSMO-CLM modeling and an assessment of mesoscale features caused by coastal parameters at near-shore Arctic zones (Kara Sea), Atmosphere, 2020, vol. 11, no. 10, p. 1062, DOI: 10.3390/atmos11101062.
33. Platonov V., Varentsov M. Introducing a new detailed longterm COSMO-CLM hindcast for the Russian Arctic and the first results of its evaluation, Atmosphere, 2021, vol. 12, no. 3, p. 350, DOI: 10.3390/atmos12030350.
34. Platonov V.S., Varentsov M.I. Supercomputer technologies as a tool for high-resolution atmospheric modelling towards the climatological timescales, Supercomp. Front. And Innov., 2018, vol. 5, no. 3, p. 107–110, DOI: 10.14529/jsfi180320.
35. Polyakov I.V., Pnyushkov A.V., Alkire M.B., Ashik I.M., Baumann T.M., Carmack E.C., Goszczko I., Guthrie J., Ivanov V.V., Kanzow T., Krishfield R., Kwok R., Sundfjord A., Morison J., Rember R., Yulin A. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin ofthe Arctic Ocean, Science, 2017, vol. 356, p. 285–291, DOI: 10.1126/science.aai8204.
36. Rockel B., Geyer B. The performance of the regional climate model CLM in different climate regions, based on the example of precipitation, Met. Zeitsch., 2008, vol. 17, no. 4, p. 487–498.
37. Saha S., Moorthi S., Pan H.-L., Wu X., Wang J., Nadiga S., Tripp P., Kistler R., Woollen J., Behringer D., Liu H., Stokes D., Grumbine R., Gayno G., Wang J., Hou Y.-T., Chuang H.-Y., Juang H.-M., Sela J., Goldberg M. The NCEP Climate Forecast System Reanalysis, Bull. Amer. Meteor. Soc., 2010, vol. 91, p. 1015–1057, DOI: 10.1175/2010BAMS3001.1.
38. Schär C., Leuenberger D., Fuhrer O., Lüthi D., Girard C. A new terrain-following vertical coordinate formulation for atmospheric prediction models, Mon. Wea. Rev., 2002, vol. 130, no. 10, p. 2459–2480, DOI: 10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2.
39. Schulz J.-P., Heise E. A new scheme for diagnosing near-surface convective gusts, COSMO Newsletter, 2003, vol. 3, p. 221–225.
40. Serreze M., Stroeve J. Arctic sea ice trends, variability and implications for seasonal ice forecasting, Philos. Trans. R. Soc. Lond., 2015, vol. 373, 20140159, DOI: 10.1098/rsta.2014.0159.
41. Shestakova A.A., Myslenkov S.A., Kuznetsova A.M. Influence of Novaya Zemlya Bora on Sea Waves: Satellite Measurements and Numerical Modeling, Atmosphere, 2020, vol. 11, no. 7, p. 726, DOI: 10.3390/atmos11070726.
42. Stopa J., Ardhuin F., Girard-Ardhuin F. Wave climate in the Arctic 1992–2014: Seasonality and trends, Cryosphere, 2016, vol. 10, p. 1605–1629, DOI: 10.5194/tc-10-1605-2016.
43. Storch von H., Langenberg H., Feser F. A spectral nudging technique for dynamical downscaling purposes, Mon. Wea. Rev., 2000, vol. 128, no. 10, p. 3664–3673, DOI: 10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.
44. Vihma T. Effects of Arctic sea ice decline on weather and climate: a review, Surv. in Geoph., 2014, vol. 35, no. 5, p. 1175–1214, DOI: 10.1007/s10712-014-9284-0.
45. Voevodin V., Antonov A., Nikitenko D., Shvets P., Sobolev S., Sidorov I., Stefanov K., Voevodin Vad., Zhumatiy S. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community, Supercomp. Front. and Innov., 2019, vol. 6, no. 2, p. 4–11, DOI: 10.14529/jsfi190201.
46. Yang X.Y., Yuan X., Ting M. Dynamical link between the Barents-Kara sea ice and the Arctic Oscillation, J. of Clim., 2016, vol. 29, no. 14, p. 5103–5122, DOI: 10.1175/JCLI-D-15-0669.1.
47. Young I.R., Ribal A. Multiplatform evaluation of global trends in wind speed and wave height, Science, 2019, vol. 364, no. 6440, p. 548–552, DOI: 10.1126/science.aav9527.
48. Atlas “Klimat morei Rossii i klyuchevykh rayonov Mirovogo okeana”. ESIMO. Karskoe more [Atlas “Climate of the Russian seas and the World Ocean key regions”. ESIMO. Kara Sea], http://www.esimo.ru/atlas/Karsk/2_waterlevel.html (accessed ondate 17.05.2021). (In Russian)
49. The Climate Limited-area Modelling Community, 2005, URL: https://wiki.coast.hzg.de/clmcom (access date 17.05.2021).
50. Core documentation of the COSMO-model. Consortium for Small Scale Modelling, 2003, URL: http://www.cosmomodel.org/content/model/documentation/core/default.htm (access date 17.05.2021).
51. Tolman H. The WAVEWATCH III Development Group (WW3DG): User manual and system documentation of WAVEWATCH III version 6.07. Tech. Note 333, NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 465 pp. +Appendices. (PDF) User manual and system documentation of WAVEWATCH III (R) version 6.07. 2019, URL: https://www.researchgate.net/publication/336069899_User_manual_and_system_documentation_of_WAVEWATCH_III_R_version_607 (access date 17.05.2021).
52. Coastal Emergency Risks Assessment CERA, 2021, URL: https://cera.coastalrisk.live (access date 07.08.2021).
53. Global Tide – FES2004. AVISO+. Satellite Altimetry Data, URL: https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes/description-fes2004.html (access date 17.05.2021).
54. OSI SAF (Ocean and Sea Ice). EUMETSAT, URL: http://www.osi-saf.org/?q=content/global-sea-ice-concentration-climate-data-record-smmrssmissmis (access date 17.05.2021).
Review
For citations:
Platonov V.S., Myslenkov S.A., Arkhipkin V.S., Kislov A.V. High-resolution modeling of hydrometeorological fi elds over the Kara Sea coastal regions with irregular coastline. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2022;(1):87-106. (In Russ.)