Natural focal diseases in the Arctic under changing climate
Abstract
The review of 55 publications focuses on the problem of the spread of natural focal diseases in the Arctic region under the global climate change. The influence of factors of a changing environment on the functioning of the foci of natural focal diseases in the Arctic regions of Russia, Europe and North America is considered, as well as the issues of the northward shift of the areas of pathogens, their carriers and vectors in connection with climate warming, and the examples of outbreaks of natural focal diseases in the Arctic regions are given. The articles were selected on the Pubmed, ScienceDirect, e-Library and Cyberleninka platforms. The analysis of publications made it possible to identify 18 natural focal diseases, the most significant for the Russian and foreign Arctic. A survey of distribution in Russia and other countries with Arctic territories was carried out for ten of them. It might be supposed that tick-borne infections will move most intensively to the north under climate changes, following the expansion of vectors and warm-blooded carriers. In addition, new outbreaks of tularemia caused by high numbers of vectors (mosquitoes and horseflies) could not be excluded, as well as the reactivation of anthrax foci due to the degradation of permafrost and thawing of cattle burial grounds. Summarizing the data on diseases and pathologies of the Arctic population showed that the most vulnerable groups are those who live in remote areas, where adaptation to climate change is most difficult due to insufficient economic support or lacking infrastructure. In general, there are a limited number of studies considering the spread of natural focal diseases under the changing environment, particularly for the most remote regions.
About the Authors
S. M. MalkhazovaRussian Federation
Professor, Head of Department, D.Sc. in Geography
V. A. Mironova
Russian Federation
Senior Scientific Researcher, Ph.D. in Geography
I. Kh. Bashmakova
Finland
University Researcher
References
1. Be’er S.A. Biologiya vozbuditelya opistorkhoza [Biology of the causative agent of opisthorchiasis], Мoscow, Tovarishchestvo nauchnyh izdaniy KMK Publ., 2005, 336 p. (In Russian)
2. Bobyreva N.S., Korneeva Ya.A., Degteva G.N. Analiz zabole vaemosti parazitozami v Nenetskom avtonomnom okruge [Analysis of the incidence of parasitoses in the Nenets Autonomous Okrug], Gigiena i sanitariya, 2016, no. 2, p. 157–162. (In Russian)
3. Desvars A., Furberg M., Hjertqvist M., Vidman L., Sjöstedt A., Rydén P., Johansson A. Epidemiology and Ecology of Tularemia in Sweden, 1984–2012, Emerging Infectious Diseases, 2015, vol. 2, no. 1, p. 32–39, DOI: 10.3201/eid2101.140916.
4. Dudarev A.A., Gorbanev S.A., Fridman K.B. Sotrudnichestvo FBUN “Severo-Zapadnyj nauchniy tsentr gigieny i obshchestvennogo zdorovya” v ramkah mezhdunarodnyh proektov v oblasti gigieny okruzhayushchey sredy Arktiki [Cooperation of the FBSI “North-West Scientific Center for Hygiene and Public Health” in the framework of international projects in the field of environmental hygiene in the Arctic], Gigiena i sanitariya, 2017, vol. 96, no. 7, p. 601–606, DOI: 10.18821/0016-9900-2017-96-7-601-606. (In Russian)
5. Dupouy-Camet J., Bourée P., Yera H. Trichinella and polar bears: A limited risk for humans, Journal of Helminthology, 2017, vol. 9, no. 4, p. 440–446, DOI: 10.1017/S0022149X17000219.
6. Eliasson H., Bäck E. Tularaemia in an emergent area in Sweden: An analysis of 234 cases in five years, Scandinavian Journal of Infectious Diseases, 2007, vol. 39, no. 10, p. 880–889, DOI: 10.1080/00365540701402970.
7. Goyette S., Cao Z., Libman M., Ndao M., Ward B.J. Seroprevalence of parasitic zoonoses and their relationship with social factors among the Canadian Inuit in Arctic regions, Diagnostic Microbiology and Infectious Disease, 2014, vol. 78, no. 4, p. 404–410, DOI: 10.1016/j.diagmicrobio.
8. Hansen C.M., Vogler A.J., Keim P., Wagner D.M., Hueffer K. Tularemia in Alaska, 1938–2010, Acta veterinaria Scandinavica, 2011, vol. 53, no. 1, p. 61, DOI: 10.1186/1751-0147-53-61.
9. Hedlund C., Blomstedt Y., Schumann B. Association of climatic factors with infectious diseases in the Arctic and subarctic region – a systematic review, Global Health Action, 2014, no. 7, p. 24161, DOI: 10.3402/gha.v7.24161.
10. Hoberg E.P., Polley L., Jenkins E.J., Kutz S.J., Veitch A.M., Elkin B.T. Integrated approaches and empirical models for investigation of parasitic diseases in northern wildlife Emerging Infectious Diseases, 2008, vol. 14, no. 1, p. 10–17, DOI: 10.3201/eid1401.071119.
11. Hotez P.J. Neglected Infections of Poverty among the Indigenous Peoples of the Arctic, PLoS Negl Trop Dis, 2010, vol. 4, no. 1, p. e606, DOI: 10.1371/journal.pntd.0000606.
12. Hueffer K., Parkinson A.J., Gerlach R., Berner J. Zoonotic infections in Alaska: disease prevalence, potential impact of climate change and recommended actions for earlier disease detection, research, prevention and control, International Journal of Circumpolar Health, 2013, vol. 72, no. 1, DOI: 10.3402/ijch.v72i0.19562.
13. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (еds.), Cambridge University Press, 2013, Cambridge, United Kingdom and New York, NY, USA, 1535 p.
14. Kershengots B.M., Chernyavskij V.F., Repin V.E., Nikiforov O.I., Sofronova O.N. Vliyanie global’nyh klimaticheskih izmenenij na realizatsiyu potentsiala infektsionnyh zabolevanij naseleniya v Rossijskoj Arktike (na primere Yakutii). Obzor [The impact of global climate change on the realization of the potential of infectious diseases of the population in the Russian Arctic (the example of Yakutia). Overview], Ekologiya cheloveka, 2009, no. 6, p. 34–39. (In Russian)
15. Kudryavtseva T.Yu., Popov V.P., Mokrievich A.N., Mazepa A.V., Okunev L.P., Kholin A.V., Kulikalova E.S., Khra mov M.V., Dyatlov I.A., Trankvilevskiy D.V. Epidemiologicheskiy i epizootologicheskiy analiz situatsii po tulyaremii v Rossiyskoy Federatsii v 2016 g., prognoz na 2017 g. [Epidemiological and epizootic analysis of the tularemia situation in the Russian Federation in 2016, forecast for 2017], Problemy osobo opasnyh infektsiy, 2017, no. 2. (In Russian)
16. Kutz S.J., Hoberg E.P., Polley L., Jenkins E.J. Global warming is changing the dynamics of Arctic host-parasite systems, Proceedings of the Royal Society B: Biological Sciences, 2005, vol. 272, no. 1581, p. 2571–2576.
17. Larsson C., Comstedt P., Olsen B., Bergström S. First record of Lyme disease Borrelia in the Arctic, Vector Borne Zoonotic Diseases, 2007, vol. 7, no. 3, p. 453–256, DOI: 10.1089/vbz.2006.0644.
18. Layshev K.A., Zabrodin V.A. Prokudin A.V., Samandas A.M. Otsenka epizooticheskoy situatsii v populyaciyah dikih severnyh oleney Arkticheskoy zony RF (obzor literatury) [Assessment of the epizootic situation in wild reindeer populations within the Arctic zone of the Russian Federation (literature review)], Aktualnye voprosy veterinarnoy biologii, 2015, vol. 4, no. 28. (In Russian)
19. Lindgren E., Gustafson R. Tick-borne encephalitis in Sweden and climate change, Lancet, 2001, Jul 7, vol. 358, no. 9275, p. 16-8, DOI: 10.1016/S0140-6736(00)05250-8.
20. Lindhusen Lindhé E., Hjertqvist M., Wahab T. Outbreak of tularaemia connected to a contaminated well in the Västra Götaland region in Sweden, Zoonoses and Public Health, 2017, vol. 65, no. 1, DOI: 10.1111/zph.12382.
21. Malkhazova S., Pestina P., Prasolova A., Orlov D. Emer ging natural focal infectious diseases in Russia: A medicalgeographical study, International Journal of Environmental Research and Public Health, 2020, vol. 17, no. 21.
22. Mediko-geograficheskiy atlas Rossii Prirodnoochagovye bolezni, 2-e izdanie [Medico-geographical atlas of Russia Natural focal diseases, 2nd edition], ed. by S.M. Malkhazova, T.V. Vatlina, T.V. Kotova, S.M. Malkhazova et al., Moscow, Geograficheskij fakul’tet MGU, 2017, 216 p. (in Russian)
23. Milhano N., Korslund L., Evander M., Ahlm C., Vainio K., Dudman S., Andreassen A.K. Circulation and diagnostics of Puumala virus in Norway: Nephropatia epidemica incidence and rodent population dynamics, APMIS: acta pathologica, microbiologica, et immunologica Scandinavica, 2017, no. 125, DOI: 10.1111/apm.12712.
24. Mørk T., Prestrud P. Arctic rabies – a review, Acta Veterinaria Scandinavica, 2004, vol. 45, no. 1–2, p. 1–9, DOI: 10.1186/1751-0147-45-1.
25. New D., Elkin B., Armstrong T., Epp T. Anthrax in the Mackenzie wood bison (Bison bison athabascae) population: 2012 anthrax outbreak and historical exposure in non-outbreak years, Journal of Wildlife Diseases, 2017, vol. 53, no. 4, p. 769–780, DOI: 10.7589/2016-11-257.
26. Ogden N.H., Maarouf A., Barker I.K., Bigras-Poulin M., Lindsay L.R., Morshed M.G., O’Callaghan C.J., Ramay F., Waltner-Toews D., Charron D.F. Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada, International Journal for Parasitology, 2006, vol. 36, no. 1, p. 63–70, DOI: 10.1016/j.ijpara.2005.08.016.
27. Olsen B., Duffy D.C., Jaenson T.G., Gylfe Å., Bonnedahl J., Bergström S. Transhemispheric exchange of Lyme disease spirochetes by seabirds, Journal of Clinical Microbiology, 1995, vol. 33, p. 3270–3274.
28. Omazic A., Berggren C., Thierfelder T., Koch A., Evengård B. Discrepancies in data reporting of zoonotic infectious diseases across the Nordic countries – a call for action in the era of climate change, International Journal of Circumpolar Health, 2019b, vol. 78, 1601991, DOI: 10.1080/22423982.2019.1601991.
29. Omazic A., Bylund H., Boqvist S., Högberg A., Björkman C., Tryland M., Evengård B., Koch A., Berggren C., Malogolovkin A., Kolbasov D., Pavelko N., Thierfelder T., Albihn A. Identifying climate-sensitive infectious disea ses in animals and humans in Northern regions, Acta Veterinaria Scandinavica, 2019a, vol. 61, p. 61–53, DOI: 10.1186/s13028-019-0490-0.
30. Pakanen V.M., Sormunen J.J., Sippola E., Blomqvist D., Kallio E.R. Questing abundance of adult taiga ticks Ixodes persulcatus and their Borrelia prevalence at the northwestern part of their distribution, Parasites and Vectors, 2020, vol. 13, no. 1, p. 384, DOI: 10.1186/s13071-020-04259-z.
31. Pakharukova M.Y., Mordvinov V.A. The liver fluke Opisthorchis felineus: biology, epidemiology and carcinogenic potential, Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, vol. 110, no. 1, p. 28–36, DOI: 10.1093/trstmh/trv085, PMID: 26740360.
32. Palo R., Ahlm C., Tärnvik A. Climate variability reveals complex events for tularemia dynamics in man and mammals, Ecology and Society, 2005, vol. 10, no. 1, p. 22.
33. Palo R.T. Time series analysis performed on nephropathia epidemica in humans of northern Sweden in relation to bank vole population dynamic and the NAO index, Zoonoses and Public Health, 2009, vol. 56, no. 150, p. 6.
34. Parkinson A.J., Evengard B., Semenza J.C., Ogden N., Børresen M.L., Berner J., Brubaker M., Sjöstedt A., Evander M., Hondula D.M., Menne B., Pshenichnaya N., Gounder P., Larose T., Revich B., Hueffer K., Albihn A. Climate change and infectious diseases in the Arctic:establishment of a circumpolar working group, International Journal of Circumpolar Health, 2014, vol. 73, p. 25163, DOI: 10.3402/ijch.v73.25163.
35. Pettersson L., Boman J., Juto P., Evander M., Ahlm C. Outbreak of Puumala virus infection, Sweden, Emerging Infectious Diseases, 2008, vol. 14, no. 5, p. 808–810, DOI: 10.3201/eid1405.071124.
36. Popova A.Yu., Demina Yu.V., Ezhlova E.B., Kulichenko A.N., Ryazanova A.G., Maleev V.V., Ploskireva A.A., Dyatlov I.A., Timofeev V.S., Nechepurenko L.A., Harkov V.V. Vspyshka sibirskoy yazvy v Yamalo-Nenetskom avtonomnom okruge v 2016 godu, epidemiologicheskie osobennosti Anthrax outbreak in the Yamal-Nenets Autonomous Okrug in 2016, epidemiological features], Problemy osobo opasnyh infektsiy, 2016, vol. 4, p. 42–46, DOI: 10.21055/0370-1069-2016-4-42-46, DOI: 10.21055/0370-1069-2016-4-42-46DOI: 10.21055/0370-1069-2016-4-42-46 (In Russian)
37. Revich B.A. Riski zdorovya naseleniya pri izmenenii klimata Arkticheskogo makroregiona [Public health risks due to climate change in the Arctic macroregion], Nauchnye trudy: Institut narodnohozyaistvennogo prognozirovaniya RAN, 2020, no. 18, p. 395–408. (In Russian)
38. Revich B.A., Tokarevich N.K., Parkinson A.J. Climate change and zoonotic infections in the Russian Arctic [Assessment of the epidemiological situation for hemorrhagic fever with renal syndrome in the world and in Russia, forecast for 2020], International Journal of Circumpolar Health, 2012, vol. 71, p. 18792, DOI: 10.3402/ijch.v71i0.18792.
39. Roy-Dufresne E., Logan T., Simon J.A., Chmura G.L., Millien V. Poleward Expansion of the White-Footed Mouse (Peromyscus leucopus) under Climate Change: Implications for the Spread of Lyme Disease, PLoS One, 2013, vol. 8, no. 11, p. e80724, DOI: 10.1371/journal.pone.0080724.
40. Rydén P., Bjork R., Schafer M.L., Lundstrom J.O., Petersen B., Lindblom A., Forsman M., Sjöstedt A., Johansson A. Outbreaks of tularemia in a boreal forest region depends on mosquito prevalence, Journal of Infectious Diseases, 2012, vol. 205, p. 297–304.
41. Rydén P., Sjöstedt A., Johansson A. Effects of climate change on tularaemia disease activity in Sweden, Global Health Action, 2009, vol. 2, DOI: 10.3402/gha.v2i0.2063.
42. Salb A., Stephen C., Ribble C., Elkin B. Descriptive epidemiology of detected anthrax outbreaks in wild wood bison (Bison bison athabascae) in northern Canada, 1962–2008, Journal of Wildlife Diseases, 2014, vol. 50, no. 3, p. 459–468, DOI: 10.7589/2013-04-095.
43. Savitskaya T.A., Ivanova A.V., Isayeva G.Sh., Reshetnikova I.D., Trifonov V.A., Ziatdinov V.B., Serova I.V., Safroniv V.A. Otsenka epidemiologicheskoy situatsii po gemorragicheskoy likhoradke s pochechnym sindromon v mire i Rossii, prognoz na 2020 g. [Assessment of the epidemiological situation of hemorrhagic fever with renal syndromone in the world and in Russia, forecast for 2020], Problemy osobo opasnyh infectsiy, 2020, no. 2, p. 62–70. (In Russian)
44. Scott J.D. Studies abound on how far north Ixodes scapularis ticks are transported by birds, Ticks and Tick Borne Diseases, 2016, vol. 7, no. 2, p. 327–328, DOI: 10.1016/j.ttbdis.2015.12.001.
45. Sidorov G.N., Poleshchuk E.M., Sidorova D.G. Priridnye ochagi beshenstva v Rossii v XX – nachale XXI vekov [Natural foci of rabies in Russia in the XX – early XXI centuries], Veterinarnaya patologiya, 2004, vol. 2, no. 10, p. 86–101. (In Russian)
46. Simon J.A., Marrotte R.R., Desrosiers N., Fiset J., Gaitan J., Gonzalez A., Koffi J.K., Lapointe F.J., Leighton P.A., Lindsay L.R., Logan T., Milord F., Ogden N.H., Rogic A., Roy-Dufresne E., Suter D., Tessier N., Millien V. Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution, Evolutionary Applications, 2014, vol. 7, no. 7. p. 750–764, DOI: 10.1111/eva.12165.
47. Smith R.P.Jr., Muzaffar S.B., Lavers J., Lacombe E.H., Cahill B.K., Lubelczyk C.B., Kinsler A., Mathers A.J., Rand P.W. Borrelia garinii in seabird ticks (Ixodes uriae), Atlantic Coast, North America, Emerging Infectious Diseases, 2006, vol. 12, no. 12, p. 1909–1912, DOI: 10.3201/eid1212.060448.
48. Soleng A., Edgar K.S., Paulsen K.M., Pedersen B.N., Okbaldet Y.B., Skjetne I.E.B., Gurung D., Vikse R., Andreassen Å.K. Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway, Ticks and Tick Borne Diseases, 2018, vol. 9, no. 1, p. 97–103, DOI: 10.1016/j.ttbdis.2017.10.002.
49. Sonne C., Andersen-Ranberg E., Rajala E.L., Agerholm J.S., Bonefeld-Jørgensen E., Desforges J.P., Eulaers I., Jenssen B.M., Koch A., Rosing-Asvid A., Siebert U., Tryland M., Mulvad G., Härkönen T., Acquarone M., Nordøy E.S., Dietz R., Magnusson U. Seroprevalence for Brucella spp. in Baltic ringed seals (Phoca hispida) and East Greenland harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals, Veterinary Immunology and Immunopathology, 2018, vol. 198, p. 14–18, DOI: 10.1016/j.vetimm.2018.02.005.
50. Strathdee A.T., Bale J.S. Life on the edge: insect ecology in arctic environments, Annual Review of Entomology, 1998, vol. 43, p. 85–106.
51. Tälleklint L., Jaenson T. Increasing Geographical Distribution and Density of Ixodes ricinus (Acari: Ixodidae) in Central and Northern Sweden, Journal of medical entomology, 1998, vol. 35, iss. 4, p. 521–526, DOI: 10.1093/jmedent/35.4.521.
52. Tokarevich N., Tronin A., Gnativ B., Revich B., Blinova O., Evengard B. Impact of air temperature variation on the ixodid ticks habitat and tick-borne encephalitis incidence in the Russian Arctic: the case of the Komi Republic, International Journal of Circumpolar Health, 2017, vol. 76, no. 1, 1298882, 13 p., DOI: 10.1080/22423982.2017.1298882.
53. Tokarevich N.K., Stoyanova N.A. Epidemiologicheskiye aspekty antropogennogo vliyaniya na evolutsiyu leptospirozov [Epidemiological aspects of anthropogenic influence on the evolution of leptospiroses], Infectsiya i immunitet, vol. 1, no. 1, p. 67–76. (In Russian)
54. Tokarevich N.K., Tronin A.A., Blinova O.V., Buzinov R.V., Boltenkov V.P., Yurasova E.D., Nurse J. The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia, Global Health Action, 2011, vol. 4, p. 8448, DOI: 10.3402/gha.v4i0.8448.
55. Tomaselli M., Elkin B., Kutz S., Harms N.J., Ingebjørg Nymo H., Davison T., Leclerc L.-M., Branigan M., Dumond M., Tryland M., Checkley S. A Transdisciplinary Approach to Brucella in Muskoxen of the Western Canadian Arctic1989–2016, Ecohealth, 2019, vol. 16, no. 3, p. 488–501, DOI: 10.1007/s10393-019-01433-3.
56. Vatlina T.V., Timonin S.A., Malkhazova S.M. Prostranstvenniy analiz sfery meditsinskogo obsluzhivaniya v Arkticheskoy zone Rossiyskoy Federatsii [Spatial analysis of the healthcare sector in the Arctic zone of the Russian Federation], Priroda i obshchestvo: v poiskah garmonii, 2019, vol. 5, p. 32–44. (In Russian)
57. Walsh M.G., Smalen de A.W., Mor S.M. Climatic influence on anthrax suitability in warming northern latitudes, Scien tific Reports, 2018, vol. 8, no. 1, 9269, DOI:10.1038/s41598-018-27604-w.
58. Zakharova O.I., Korennoy F.I., Toropova N.N., Burova O.A., Blokhin A.A. Environmental Risk of Leptospirosis in Animals: The Case of the Republic of Sakha (Yakutia), Russian Federation, Pathogens, 2020, vol. 9, p. 504, DOI: 10.3390/pathogens9060504.
59. Cyberleninka, URL: https://cyberleninka.ru (access date 10.03.2021).
60. eLibrary, URL: https://www.elibrary.ru/defaultx.asp? (access date 13.03.2021).
61. Overland J.E., Hanna E., Hanssen-Bauer I., Kim S.-J., Walsh J.E., Wang M., Bhatt U.S., Thoman R.L. Surface Air Temperature, Arctic Report: Update for 2017, URL: https://www.arctic.noaa.gov/Report-Card/Report-Card-2017/ArtMID/7798/ArticleID/700/Surface-Air-Temperature (access date 10.05.2020).
62. Pubmed, URL: https://pubmed.ncbi.nlm.nih.gov/ (access date 03.03.2021).
63. ScienceDirect, URL: https://www.sciencedirect.com (access date 28.02.2021).
Review
For citations:
Malkhazova S.M., Mironova V.A., Bashmakova I.Kh. Natural focal diseases in the Arctic under changing climate. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2022;(1):43-57. (In Russ.)