Preview

Lomonosov Geography Journal

Advanced search

Changes of the hydrometeorological potential of thermoabrasion on the Russian Arctic sea coasts

Abstract

The paper presents the results of the analysis of wave-energy and thermal components of the hydrometeorological (HM) potential of coast thermoabrasion for nine key areas in the western and eastern sectors of the Russian Arctic for the period of 1979 to 2017. The air thawing and air freezing indices were used to calculate the thermal impact on the permafrost coasts the indices represent the accumulated sum of mean daily temperatures of the warm and cold periods, respectively. The wave-energy component is calculated using the Popov-Sovershaev method. The calculations used data from hydrometeorological stations and CFSR, CFSv2, MERRA and ERA5 reanalysis data. The duration of the ice period is determined using the satellite data.

It was found that the thawing index is everywhere growing steadily and significantly, and the total potential for destruction of the shores built of frozen dispersed rocks has been significantly increasing recently in all regions of the Russian Arctic. There is an increase in the HM potential for coastal destruction along the coast from about the Kolguev Island to Chukotka due to both thermal and mechanical factors, including the associated increasing ice-free period. For the period 1979–2017 the increment averaged 30 to 95% of the long-term average, which is 1.2 to 3 times the standard variability. The most significant changes are observed on the island of Ayon, which has the most severe climate; the least significant changes were in Lorino, on the Chukochy Cape and in the Buor-Khaya Bay. The increase results from both the increasing temperatures, and the growth in the energy flows of wind waves. The duration of ice-free period correlates with the warm season temperatures, the wind wave energy, and mostly with the total HM impact. Thus, the duration of the ice-free period is a leading factor in the dynamics of the Arctic coasts, determining both temperature and wave conditions. Changing frequency of storms of wave-dangerous directions plays the main role in the dynamics of the wind-wave factor.

About the Authors

S. A. Ogorodov
Lomonosov Moscow State University, Faculty of Geography, Research Laboratory of Geoecology of the North
Russian Federation

Chief Researcher, D.Sc. in Geography, Professor of the RAS



N. N. Shabanova
Lomonosov Moscow State University, Faculty of Geography, Research Laboratory of Geoecology of the North
Russian Federation

Researcher



A. S. Kessel
FGBU GOIN named after N.N. Zubov
Russian Federation

Postgraduate student



A. V. Baranskaya
Lomonosov Moscow State University, Faculty of Geography, Research Laboratory of Geoecology of the North; Institute of Geography RAS, Department of Paleogeography of the Quaternary, laboratory of paleoarchives of the natural environment, Junior Researcher
Russian Federation

Leading Researcher



S. O. Razumov
Institute of Permafrost named after P.I. Melnikov SB RAS, Laboratory of General Geocryology
Russian Federation

Chief Researcher, D.Sc. in Geography



References

1. Aleksyutina D., Ogorodov S., Shilova O.S. Simulation of coastal dynamics at the Kara Sea, J. of Coastal Research, 2020, no. 95, p. 330–335.

2. Aleksyutina D.M., Maznev S.V., Belova N.G., Shilova O.S. Vliyanie kriogennykh protsessov na dinamiku Ural’skogo berega Baidaratskoi guby Karskogo moray [The influence of the permafrost processes upon erosion of the Ural coast of Baydaratskaya Bay, Kara Sea], Arktika i Antarktika, 2019, no. 4. p. 84–96, DOI: 10.7256/2453-8922.2019.4.31604. (In Russian)

3. Andersland O.B., Ladanyi B. Frozen ground engineering, 2nd edition. Hoboken, New Jersey, John Wiley & Sons, 2004, p. 10–50.

4. Are F.E. Termoabraziya morskikh beregov [Thermal abrasion of sea coasts], Moscow, Nauka Publ., 1980, p. 5–40. (In Russian)

5. Atkinson D.E. Observed storminess patterns and trends in the circum-Arctic coastal regime, Geo-Mar Lett., 2005, vol. 25, p. 98–109, DOI: 10.1007/s00367-004-0191-0.

6. Atkinson D.E., Solomon S.M. A circumarctic environmental forcing database for coastal morphological prediction: development and preliminary analyses. Arctic Coastal Dynamics, V. Rachold, J. Brown, S. Solomon, J.L. Sollid (eds.), Rep. on Polar and Marine Res. Bremerhaven, AWI Publ., 2003, no. 443, p. 19–23.

7. Baranskaya A., Novikova A., Shabanova N., Romanenko F., Ogorodov S. Late Quaternary and Modern Evolution of Permafrost Coasts at Beliy Island, Kara Sea, J. of Coastal Research, 2020, vol. 95, p. 356–361, DOI: 10.2112/SI95-069.1.

8. Baranskaya A.V., Novikova A.V., Shabanova N.N., Belova N.G., Maznev S.V., Ogorodov S.A., Jones B.M. Therole of thermal denudation in erosion of ice-rich permafrost coasts in an enclosed bay, Frontiers in Earth Science, 2021, vol. 8, 566227, DOI: 10.3389/feart.2020.566227.

9. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., Berg de van L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., Rosnay de P., Tavolato C., Thépaut J.-N., Vitart F. The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q.J.R. Meteorol. Soc., 2011, vol. 137, p. 553–597, DOI: 10.1002/qj.828.

10. Duan C., Dong S., Wang Z. Wave climate analysis in the ice-free waters of Kara Sea, Regional Studies in Marine Science, 2019, vol. 30, Article 100719, DOI: 10.1016/j.rsma.2019.100719.

11. Fartyshev A.I. Osobennosti pribrezhno-shel’fovoi kriolitozony morya Laptevykh [Specific features of the coastal shelf permafrost zone of the Laptev Sea], Novosibirsk, Nauka Publ., 1993, 136 p. (In Russian)

12. GEBCO Compilation Group. GEBCO 2020 Grid, 2020, DOI: 10.5285/a29c5465-b138-234d-e053-6c86abc040b9.

13. Gelaro R., McCarty W., Suárez M.J. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Clim., 2017, vol. 30, iss. 14, p. 5419–5454, DOI: 10.1175/JCLI-D-16-0758.1.

14. Grigor’ev M.N. Kriomorfogenez i litodinamika pribrezhnoshel’fovoi zony morei Vostochnoi Sibiri [Cryomorphogenesis and lithodynamics of the coastal shelf zone of the seas of Eastern Siberia], Extended Abstract of Ph.D. Thesis in geological and mineralogical sciences, Yakutsk, In-t Мerzlotovedeniya Siberian Branch of the Russian Academy of Sciences, 2008, 40 p. (In Russian)

15. Grigor’ev M.N., Razumov S.O., Kunitskii V.V., Spektor V.B. Dinamika beregov vostochnykh arkticheskikh morei Rossii: osnovnye faktory, zakonomernosti i tendentsii [Dynamics of the Russian East Arctic sea coast: major factors, regularities and tendencies], Kriosfera Zemli, 2006, vol. 10, no. 4, p. 74–94. (In Russian)

16. Hersbach H., Bell B., Berrisford P., Hirahara Sh., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., Chiara de G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R. J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez Ph., Lupu Cr., Radnoti G., Rosnay de P., Rozum I., Vamborg Fr., Villaume S., Thépaut J.-N. The ERA5 Global Reanalysis, Quarterly J. of Royal Meteorological Society, 2020, vol. 146, iss. 730, p.1999–2049, DOI: 10.1002/qj.3803.

17. Jones B.M., Arp C.D., Jorgenson M.T., Hinkel K.M., Schmutz J.A., Flint P.L. Increase in the rate and uniformity of coastline erosion in Arctic Alaska, Geophysical Research Letters, 2009, vol. 36, p. L03503, DOI: 10.1029/2008GL036205.

18. Kizyakov A.I., Zimin M.V., Leibman M.O., Pravikova N.V. Monitoring skorosti termodenudatsii i termoabrazii na zapadnom poberezh’e ostrova Kolguev s ispol’zovaniem materialov kosmicheskoi s”emki vysokogo razresheniya [Monitoring of the rate of thermal denudation and thermal abrasion on the western coast of Kolguev Island using high-resolution satellite images], Kriosfera Zemli, 2013, vol. 17, no. 4, p. 36–47. (In Russian)

19. Lantuit H., Overduin, P.P., Wetterich S. Recent progress regarding permafrost coasts, Permafrost Periglac., 2013, vol. 24, no. 2, p. 120–130, DOI: 10.1002/ppp.1777.

20. Liu Q., Babanin A., Zieger S., Young I., Guan C. Wind and wave climate in the Arctic Ocean as observed by altimeters, J. Climate, 2016, vol. 29, no. 22, p. 7957–7975.

21. Maslakov A.A. [Modern dynamics of the shores of the Bering and Chukchi seas], Zakonomernosti formirovaniya i vozdejstviya morskih, atmosfernyh yavlenij i katastrof na pribrezhnuyu zonu RF v usloviyah globalnyh klimaticheskih i industrialnyh vyzovov (“Opasnye yavleniya”) [Regularities of the formation and impact of marine, atmospheric hazards and disasters on the coastal zone of the Russian Federation in the context of global climatic and industrial challenges (“Hazardous phenomena”)], Materialy Mezhdunarodnoi nauchnoi konferentsii (Rostov-na-Donu, 13–23 July, 2019), Rostov-na-Donu, Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences Publ., 2019, p. 181–182. (In Russian)

22. Myslenkov S., Platonov V., Kislov A., Silvestrova K., Medvedev I. Thirty-Nine-Year Wave Hindcast, Storm Activity, and Probability Analysis of Storm Waves in the Kara Sea, Russia, Water, 2021, vol. 13, no. 5, p. 648, DOI: 10.3390/w13050648.

23. Ogorodov S.A. Rol’ morskikh l’dov v dinamike rel’efa beregovoi zony [The role of sea ice in the dynamics of the coastal zone relief], Moscow, Moscow State Un-ty Publ., 2011, 173 p. (In Russian)

24. Overland J., Dunlea E., Box J.E., Corell R., Forsius M., Kattsov V., Olsen M.S., Pawlak J., Reiersen L.-O., Wang M. The urgency of Arctic change, Polar Science, 2019, vol. 21, p. 6–13, DOI: 10.1016/j.polar.2018.11.008.

25. Poli P., Hersbach H., Dee D., Berrisford P., Simmons A., Vitart F., Laloyaux P., Tan D.G., Peubey C., Thépaut J., Trémolet Y., Hólm E., Bonavita M., Isaksen L., Fisher M.A. ERA-20C: An Atmospheric Reanalysis of the Twentieth Century, J. of Climate, 2016, vol. 29, p. 4083–4097, DOI: 10.1175/JCLI-D-15-0556.1.

26. Popov A.I. Ob usloviyakh formirovaniya osadochno-kriogennogo kompleksa v pleistotsene na primorskikh ravninakh Subarktiki [Conditions of formation of the sedimentary- cryogenic complex in the Pleistocene on the coastal plains of the Subarctic], Problemy kriolitologii, 1983, vol. 11, p. 19–37. (In Russian)

27. Popov B.A., Sovershaev V.A. [Particular features of dynamics of the Arctic Sea coasts of Asia], Voprosy geografii [Topics of geography], Moscow, Mysl’ Publ., 1982, vol. 119, p. 105–116. (In Russian)

28. Popov B.A., Sovershaev V.A. [Principles of choice of initial data for calculating wave energy fluxes], Beregovaya zona morya [Coastal zone of the sea], Moscow, Nauka Publ., 1981, p. 47–153 (In Russian)

29. Razumov S.O. Model’ dinamiki l’distykh beregov s peremennymi sostavlyayushchimi abrazionnoi aktivnosti morya v nestatsionarnykh klimaticheskikh usloviyakh [Ice-rich coast dynamics model with variable components of the sea abrasion activity in unstable climatic conditions], Kriosfera Zemli, 2002, vol. VI, no. 3, p. 35–44. (In Russian)

30. Razumov S.O., Grigoriev M.N. Coastal erosion as a destabilizing factor of carbonate balance in the East Siberian Arctic seas, Earth’s Cryosphere, 2011, vol. 15, no. 4, С. 65–68.

31. Saha S., Moorthi S., Pan H.-L., Wu X., Wang J., Nadiga S., Tripp P., Kistler R., Woollen J., Behringer D., Liu H., Stokes D., Grumbine R., Gayno G., Wang J., Hou Y.-T., Chuang H.-Y., Juang H.-M., Sela J., Goldberg M. The NCEP Climate Forecast System Reanalysis, Bull. Amer. Meteor. Soc., 2010, vol. 91, p. 1015–1057.

32. Saha S., Moorthi S., Wu X., Wang J., Nadiga S., Tripp P., Behringer D., Hou Y.-T., Chuang H.-Y., Iredell M., Ek M., Meng J., Jang R., Mendez M., Dool van den H., Zhang Q., Wang W., Chen M., Becker E. The NCEP Climate Forecast System Version 2, Journal of Climate, 2014, vol. 27, iss. 6, p. 2185–2208, DOI: 10.1175/JCLID-12-00823.1.

33. Savo V., Lepofsky D., Benner J.P., Kohfeld K.E., Bailey J., Lertzman K. Observations of climate change among subsistence-oriented communities around the world, Nat. Clim. Change, 2016, vol. 6, p. 462–473, DOI: 10.1038/nclimate2958.

34. Serreze M.C., Barrett A.P., Stroeve J.C., Kindig D.N., Holland M.M. The emergence of surface-based Arctic amplification, The Cryosphere, 2009, vol. 3, iss. 1, p. 11–19, DOI: 10.5194/tc-3-11-2009.

35. Shabanov P.A., Shabanova N.N. Open water season changes over the Kara Sea coastal zone: Marresalya example, IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019, p. 4218–4221.

36. Shabanova N.N., Ogorodov S., Shabanov P., Baranskaya A. Hydrometeorological forcing of Western Russian arctic coastal dynamics: XX-century history and current state, Geography, Environment, Sustainability, 2018, vol. 11, no. 1, p. 113–129, DOI: 10.24057/2071-9388-2018-11-1-113-129.

37. Stopa J., Ardhuin F., Girard-Ardhuin F. Wave climate in the Arctic 1992–2014: seasonality and trends, The Cryosphere, 2016, vol. 10, no. 4, p. 1605–1629.

38. Surkova G.V., Sokolova L.A., Chichev A.R. Mnogoletnii rezhim ekstremal’nykh znachenii skorosti vetra v Barentsevom i Karskom moryakh [Long-term regime of extreme winds in the Barents and Kara seas], Vestn. Mosk. Un-ta, Ser. 5, Geogr., 2015, no. 5, p. 53–58. (In Russian)

39. Vasil’ev A.A., Streletskaya I.D., Cherkashev G.A., Vanshtein B.G. Dinamika beregov Karskogo morya [Coastal dynamics of the Kara Sea], Kriosfera Zemli, 2006, vol. 10, no. 2, p. 56–67. (In Russian)

40. Velikotskii M.A. [Features of the modern dynamics of the Kolguev Island coast], Dinamika Arkticheskih poberezhij Rossii [Dynamics of the Arctic coasts of Russia], MGU Publ., 1998, p. 93–101. (In Russian)

41. Voskresenskii K.S., Sovershaev V.A. [The role of exogenous processes in the dynamics of the Arctic coasts], Dinamika Arkticheskih poberezhij Rossii [Dynamics of the Arctic coasts of Russia], Moscow, Moscow State Un-ty Publ., 1998, p. 35–48. (In Russian)

42. Waseda T., Webb A., Sato K., Inoue J., Kohout A., Penrose B. Correlated increase of high ocean waves and winds in the ice-free waters of the Arctic Ocean, Scientific Reports, 2018, vol. 8, no. 1, DOI: 10.1038/s41598-018-22500-9.

43. C3S – Copernicus Climate Change Service: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), 2017, URL: https://cds.climate.copernicus.eu/cdsapp#!/home) (access date 15.04.2019).

44. CFSR – Climate Data. Climate Forecast System Reanalysis. NCAR, USA, URL: https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr (access date 15.04.2019).

45. IPCC. Climate Change 2014. AR5 Synthesis Report, 2014, URL: https://www.ipcc.ch/report/ar5/syr/ (access date 01.05.2020).

46. OSI SAF. Global Sea Ice Concentration Climate Data Record v2.0 – Multimission, EUMETSAT SAF on Ocean and Sea Ice, 2017, DOI: 10.15770/EUM_SAF_OSI_0008 (access date 01.05.2020).

47. OSI SAF. Global sea ice concentration interim climate data record 2016 onwards (v2.0), EUMETSAT on Ocean and Sea Ice, 2019, URL: http://osisaf.met.no/p/ice/ice_conc_reprocessed.html (access date 01.05.2020).


Review

For citations:


Ogorodov S.A., Shabanova N.N., Kessel A.S., Baranskaya A.V., Razumov S.O. Changes of the hydrometeorological potential of thermoabrasion on the Russian Arctic sea coasts. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2022;(1):26-42. (In Russ.)

Views: 666


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)