Isotope palaeothermometry problems for the Caspian Sea
Abstract
The oxygen isotope analysis is an important tool for the correlation of palaeogeographic events both within the Caspian region and while considering the Caspian history against the background of global climate changes. At the current level of knowledge, the oxygen isotope application as a palaeotemperature method for the Caspian region cannot be substantiated theoretically; such reconstructions for the Caspian Sea require a special approach. The necessary special studies have not been carried out yet in the region. A practical attempt to calculate palaeotemperatures for the Late Pleistocene – Holocene was carried out on the basis of oxygen isotope data from two boreholes in the northern part of the Caspian Sea. Ostracod shells are one of the most reliable indicators of palaeoecological parameters, so they were chosen as a material for isotope measurements. An attempt to solve several variations of the palaeotemperature equations with a certain degree of convention was made, by applying zero correction for the water background, calculating water background through salinity values and considering taxonomic and metabolic features of ostracod shells. The resulting water temperatures in the Late Pleistocene – Holocene were from 12.8 to 99.7°C in the first case, from 5.4 to 49.9°C in the second, and about 35.4–62.3°C during the Holocene in the third case. The calculated palaeotemperatures values are definitely overestimated and cannot be considered reliable. We conclude that the considered methods are not applicable for calculating palaeohydrological parameters in the Caspian region. The importance and necessity of the selection and introduction of special corrections is shown, since the changes in the isotopic composition of a closed reservoir undergo much more complex trends than in the ocean, and require a detailed study of all factors that can influence them.
Keywords
About the Author
A. A. BerdnikovaRussian Federation
Ph.D. student
References
1. Abreu V., Nummedal D. Miocene to Quaternary sequence stratigraphy of the South and Central Caspian basins, Oil and gas of the Greater Caspian area: AAPG Studies in Geology, 2007, no. 55, p. 65–86, DOI: 10.1306/1205845St553000.
2. Anderson T.F., Arthur M.A. Stable isotopes of oxygen and carbon and their application to sedimentologic and palaeoenvironmental problems, Stable isotopes in sedimentary geology. SEPM Short Course, 1983, no. 10, p. 1–151, DOI: 10.2110/scn.83.01.0000.
3. Azizov T.S. Relationship between the isotopic composition of groundwater and the oil and gas content of offshore fields in the Caspian Sea. Oxygen isotope situation in the Caspian Sea, XXII Vsesoyuznyi Simpozium po stabil’nym izotopam v geokhimii [XXII All-Russian Symposium on stable isotopes in geochemistry], Moscow, Nauka Publ., 1989, р. 197–198. (In Russian)
4. Berdnikova A.A., Garova E.S., Wesselingh F.P., Yanina T.A., Stoica M., Velde van de S. First results of stable oxygen isotope analysis of Late Pleistocene sediments in the North Caspian basin, Proceedings of UNESCO-IUGSIGCP 610 and INQUA POCAS Joint Plenary Conference and Field Trip (Antalya, Turkey, October 14–21, 2018), Istanbul, Dokuman Evi, Avcilar Istanbul, 2018, p. 34–36.
5. Berdnikova A.A., Yanina T.A., Zenina M.A., Sorokin V.M. Correlation of the Ponto-Caspian basins during the MIS 2 based on stable oxygen isotope analysis. Ponto-Caspian stratigraphy and geochronology, Proceeding of Third plenary meeting and field trip of INQUA IFG 1709F POCAS (Tehran and Guilan Province, I.R. Iran, October 11–18, 2019), Tehran, Iranian National Institute for Oceanography and Atmospheric Science Tehran, 2019, p. 14–17.
6. Carroll A.R., Bohacs K.M. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls, Geology, 1999, no. 27 (2), p. 99–102, DOI: 10.1130/0091-7613(1999)027<0099:SCOALB>2.3.CO;2.
7. Chivas A.R., Garcia A., Kaars van der S., Couapel M.J.J., Holt S., Reeves J.M., Wheeler D.J., Switzer A.D., Murray-Wallace C.V., Banerjee D., Price D.M., Wang S.X., Pearson G., Edgar N.T., Beaufort L., De Deckker P., Lawson E., Cecil C.B. Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: an overview, Quaternary International, 2001, no. 83, p. 19–46, DOI: 10.1016/S1040-6182(01)00029-5.
8. Craig H. The measurement of oxygen isotope paleotemperature, Stable Isotope in Oceanographic Studies and Paleotemperatures, Tongiogi E. Spoleto, 1965, p. 3–24.
9. Devriendt L.S., McGregor H.V., Chivas A.R. Ostracod calcite records the 18O/16O ratio of the bicarbonate and carbonate ions in water, Geochimica et Cosmochimica Acta, 2017, no. 214, p. 30–50, DOI: 10.1016/j.gca.2017.06.044.
10. Emiliani C. Pleistocene temperatures, Journal Geol., 1955, no. 63, p. 538–578, DOI: 10.1177/030913339602000404.
11. Epstein S., Buchsbaum R., Lowenstam H.A., Urey H.C. Carbonate-water isotopic temperature scale, Geol. Soc. Amer. Bull., 1951, no. 63, p. 417–426, DOI: 10.1130/0016-7606(1951)62[417:CITS]2.0.CO;2.
12. Epstein S., Buchsbaum R., Lowenstam H.A., Urey H.C. Revised carbonate-water isotopic temperature scale, Geol. Soc. Amer. Bull., 1953, no. 64, p. 1315, DOI: 10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2.
13. Eremeev V.N. Osnovnye cherty shirotnogo raspredeleniya δ18O v poverkhnostnykh vodakh Atlanticheskogo okeana [Main features of the latitudinal distribution of δ18O in the surface waters of the Atlantic Ocean], Morskie gidrofizicheskie issledovaniya, Sevastopol, Marine Hydrophysical Institute of the Academy of Sciences of the Ukrainian SSR Publ., 1974, р. 214–217. (In Russian)
14. Erez J., Luy B. Experimental paleotemperature equation for planktonic foraminifera, Geochimica et Cosmochimica Acta, 1983, vol. 47, no. 6, p. 1025–1031, DOI: 10.1016/0016-7037(83)90232-6.
15. Fedorov Yu.A. Stable isotopes and evolution of the hydrosphere, Moscow, Ministry of Defense of the Russian Federation, CENTER “Truth” Publ., 1999, 370 p.
16. Ferronsky V.I., Brezgunov V.S., Romanov V.V., Vlasova I.S., Polykov V.A., Bobkov V.F. Isotopes studies of Caspian Sea level rise implication, Proceedings of the UNESCOIHP-IOC-IAEA workshop on Sea level rise and the multidisciplinary studies of environmental processes in the Caspian Sea region (Paris, May 9–12, 1995): Workshop Report. Intergovernmental Oceanographic Commission, 1995, p. 28–40.
17. Ferronsky V.I., Polykov V.A., Froehlich K., Lobov A.L., Batov V.I., Petrošius R., Kuprin P.N., Varuschenko A.N., Bobkov V.F. Isotope studies of the Caspian Sea Climatic record from bottom sediments (preliminary results), Proceedings of a Symposium Isotope techniques in the study of environmental change, 1997, p. 633–644.
18. Froehlich K., Rozanski K., Povinec P., Oregioni B., Gastaud J. Isotope studies in the Caspian Sea, The Science of the Total Environment, 1999, no. 237/238, p. 419–427, DOI: 10.1016/S0048-9697(99)00154-0.
19. Grafenstein von U., Erlernkeuser H., Trimborn P. Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies, Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, no. 148, p. 133–152, DOI: 10.1016/S0031-0182(98)00180-1.
20. Ibarra D.E., Chamberlain C.P. Quantifying closed-basin lake temperature and hydrology by inversion of oxygen isotope and trace element paleoclimate records, American Journal of Science, 2015, no. 315(9), p. 781–808, DOI: 10.2475/09.2015.01.
21. Leng M.J., Marshall J.D. Palaeoclimate interpretation of stable isotope data from lake sediment archives, Quaternary Science Reviews, 2004, no. 23, p. 811–831, DOI: 10.1016/j.quascirev.2003.06.012.
22. McCrea J.M. On the isotopic chemistry of carbonates and a paleotemperature scale, Journal of Chemical Physics, 1950, no. 18, p. 849–857, DOI: 10.1063/1.1747785.
23. Morkhoven van F.P.C.M. Post-palaeozoic Ostracoda: Their Morphology, Taxonomy and Economic Use, Elsevier Publishing Company, 1962, 478 p. DOI: 10.1086/404561.
24. Nier A.O.C. A mass spectrometer for isotope and gas analysis, Rev. Sci. Inst., 1947, no. 18, p. 398–411, DOI: 10.1063/1.1740961.
25. Nikolaev S.D. Izotopnaya paleogeografiya vnutrikontinental’nykh morei [Isotope paleogeography of the inland seas], Moscow, Russian Scientific Research Institute of Fisheries and Oceanography Publ., 1995, 127 p. (In Russian)
26. O’Neil J.R., Clayton R.N., Mayeda T.K. Oxygen isotope fractionation in divalent metal carbonates, Journal of Chemical Physics, 1969, no. 51, p. 5547–5558, DOI: 10.1063/1.1671982.
27. Shackleton N.J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina; isotopic changes in the ocean during the last glacial, Colloques Internationaux du Centre National de la Recherche Scientifique, 1974, no. 219, p. 203–209, DOI: 10013/epic.41396.
28. Shkatova V.K. Paleogeography of the Late Pleistocene Caspian Basins: Geochronometry, paleomagnetism, paleotemperature, paleosalinity and oxygen isotopes, Quaternary International, 2010, no. 225, p. 221–229, DOI: 10.1016/j.quaint.2009.05.001.
29. Teis R.V., Naidin D.P. Paleotermometriya i izotopnyi analiz kisloroda organogennykh karbonatov [Paleothermometry and oxygen isotope analysis of organogenic carbonates], Moscow, Nauka Publ., 1973, 278 p. (In Russian)
30. Turpen J.B., Angell R.W. Aspects of molting and calcification in the ostracode Heterocypris, Biological Bulletin of the Marine Biology Laboratory, 1971, no. 140, p. 331–338, DOI: 10.2307/1540077.
31. Urey H.C. The thermodynamic properties of isotopic substances, Journal Chem. Soc., 1947, p. 562–581, DOI: 10.1039/JR9470000562.
32. Xia J., Ito E., Engstrom D.R. Geochemistry of ostracode calcite: part 1. An experimental determination of oxygen isotope fractionation, Geochimica et Cosmochimica Acta, 1997, no. 61, p. 377–382, DOI: 10.1016/S0016-7037(96)00351-1.
Review
For citations:
Berdnikova A.A. Isotope palaeothermometry problems for the Caspian Sea. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2021;(6):51-61. (In Russ.)