Preview

Lomonosov Geography Journal

Advanced search

Particulate composition of suspended sediments: characteristics, classifications and spatial variability

Abstract

The approaches to the study of the grain size of suspended sediments are analyzed. The congruency of mechanical, hydromechanical and migratory classifications is considered, and thereupon river sediments are defined as insoluble substances with grain size larger than 0,001 mm, which are the products of destruction of rocks, soils or organic compounds transformed by flocculation and sorption processes. At the same time, the "methodological" definition relevant to the filters parameters considers river deposits to be particles larger than 0,45 mm moving in the water column. Following on the database of processed sediment samples (736 samples for 36 rivers) the features of suspended river sediments of various natural territories are described. The average particle diameter of suspended sediments is 0,083 mm; fractions less than 0,001 mm account for 4%; 0,001–0,01 mm for 37% and 0,01–0,1 mm for 44%. Two-modal (49% of cases) and single-modal (46%) grain-size compositions of suspended sediments prevail in the rivers of different natural conditions. Lowland rivers have mainly two-modal and in some cases three-modal fraction distributions, due to the presence of a third maximum of large fractions (>0,75 mm). Approximately identical turbidity peaks (0,005–0,01 and 0,05–0,1 mm) are characteristic of mountain glacial rivers, while in semi-mountain and plain rivers the turbidity peaks shift towards smaller fractions (0,001–0,005 and 0,01–0,03 mm). The peak of 0,01–0,03 mm (up to 35–50% of the total sediment amount) reaches its maximum in semi-mountain rivers; it decreases as the discharge increases and the channel type changes downstream. The greatest degree of discrimination of fractions is typical for lowland and semi-mountain rivers relative to mountain glacial rivers. The rivers of lakhar valleys, as well as the Terek, Kolyma and Lena rivers, are specific groups in terms of the distribution of fractions of suspended sediments.

About the Authors

S. R. Chalov
Lomonosov Moscow State University
Russian Federation

Faculty of Geography, Department of Land Hydrology, Associate Professor, PhD in Geography



V. A. Efimov
Lomonosov Moscow State University
Russian Federation

Faculty of Geography, Department of Land Hydrology, PhD Student



References

1. Alekseevskij N.I. Formirovanie i dvizhenie rechnykh nanosov [Formation and movement of river sediments], Moscow, MSU Publ., 1998, 202 p. (In Russian)

2. Bouchez J., Gaillardet J., France-Lanord C., Maurice L., Dutra-Maia P. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles, Geochemistry, Geophysics, Geosystems, 2011, vol. 12(3), p. 1–24, DOI: 10.1029/2010GC003380.

3. Chalov R.S. Ruslovedenie: teoriya, geografiya, praktika, T. 1, Ruslovye protsessy: faktory, mekhanizmy, formy proyavleniya i usloviya formirovaniya rechnykh rusel [Channel studies: theory, geography, practice. Vol. 1. Channel processes: factors, mechanisms, forms of manifestation and formation conditions of river channels], Moscow, LKI Publ., 2008, 608 p. (In Russian)

4. Chalov S.R., Shkol’nyi D.I., Promakhova E.V., Leman V.N., Romanchenko A.O. Formation of the sediment yield in areas of mining of placer deposits, Geography and natural resources, 2015, no. 2, p. 124–131.

5. Chalov S.R., Tsyplenkov A.S. Stok nanosov malykh rek raionov sovremennogo vulkanizma (r. Sukhaya Elizovskaya, Kamchatka) [Sediment discharge of small rivers in areas of active volcanisms (River Sukhaya Elizovskaya, Kamchatka)], Geomorfologiya, 2017, no. 1, p. 104–116. (In Russian)

6. Chalov S., Moreido V., Sharapova E., Efimova L., Efimov V., Lychagin M., Kasimov N. Hydrodynamic controls of particulate metals partitioning along the lower Selenga river – main tributary of the lake Baikal, Water, 2020, vol. 12(1345), p. 1–17.

7. Friedman G.M., Sanders J.E. Principles of Sedimentology, NY., Wiley & Sons Publ., 1978, 792 p.

8. Glazovskaya M.A., Gennadiev A.N. Geografiya pochv s osnovami pochvovedeniya [Soil Geography with Fundamentals of Soil Science], Moscow, MSU Publ., 1995, 463 p. (In Russian)

9. Guy H.P. Laboratory theory and methods for sediment analysis, Washington, D.C., USA, US G. P. O., 1969, 58 p.

10. Hinds W.C. Properties, Behavior, and Measurement of Airborne Particles, Journal of Aerosol Science, 1999, vol. 14(2), p. 175, DOI: 10.1016/0021-8502(83)90049-6.

11. Horowitz A.J., Elrick K.A. The relation of stream sediment surface area, grain size and composition to trace element chemistry, Applied Geochemistry, 1987, vol. 2(4), р. 437–451, DOI: 10.1016/0883-2927(87)90027-8.

12. IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015, International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports, no. 106, FAO, Rome, 2015, 192 р.

13. Julien P.Y. Erosion and sedimentation, Second edition, Cambridge University Press, 2010, vol. 9780521830386, 371 p.

14. Karaushev A.V. Teoriya i metody raschetov rechnykh nanosov [Theory and methods of river sediments calculation], Leningrad, Gidrometeoizdat Publ., 1977, 272 p. (In Russian)

15. Kasimov N.S. Ekogeokhimiya landshaftov [Landscape Ecogeochemistry], Moscow, IP Filimonov M.V. Publ., 2013, 208 p. (In Russian)

16. Kasimov N.S., Lychagin M.Yu., Chalov S.R., Shinkareva G.L., Pashkina M.P., Romanchenko A.O., Promakhova E.V. Basseinovyi analiz potokov veshchestv v sisteme Selenga – Baikal [Catchmentbased analysis of matter flows in the Selenga-Baikal system], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2016, no. 3, p. 67–81. (In Russian)

17. Khalyafyan A.A. Statictica 6. Statisticheskii analiz dannykh [Statistica 6. Statistical data analysis], Moscow, Binom Publ., 2007, 512 p. (In Russian)

18. Knighton D. Fluvial forms and processes, London, John Wiley & Sons, 1998, 218 p.

19. Linnik P.N., Nabivanets B.I. Formy migratsii metallov v presnykh poverkhnostnykh vodakh [Forms of metals migration in fresh surface waters], Leningrad, Gidrometeoizdat Publ., 1986, 272 p. (In Russian)

20. Lopatin G.V. Nanosy rek SSSR [Sediments of the USSR rivers], Moscow, Geografgiz. Publ., 1952, 366 p. (In Russian)

21. Lupker M., France-Lanord C., Lavé J., Bouchez J., Galy V., Métivier F., Gaillardet J., Lartiges B., Mugnier J.-L.A Rouse-based method to integrate the chemical composition of river sediments: Application to the Ganga basin, Journal Geophys. Res., 2011, vol. 116, p. 1–24, DOI: 10.1029/2010JF001947.

22. Makkaveev N.I. Ruslo reki i eroziya v ee basseine [River channel and erosion in the river basin], Moscow, AN USSR Publ., 1955, 353 p. (In Russian)

23. Mel’nikov P.F. Issledovaniya po razrabotke metoda podgotovki zasolennykh i karbonatnykh gruntov k granulometricheskomu analizu [Studies on the development of a method of preparing saltaffected and carbonate soils for granulometric analysis], Uchenye zapiski MGU, 1956, vol. 177(4), p. 81–94. (In Russian)

24. Perel’man A.I., Kasimov N.S. Geokhimiya landshafta [Landscape geochemistry], Moscow, Astreya-2000 Publ., 1999, 610 p. (In Russian)

25. Petersen L.W., Moldrup P., Jacobsen O.H., Rolston D.E. Relations between specific surface area and soil physical and chemical properties, Soil Science, 1996, vol. 161(1), p. 9–21, DOI: 10.1097/00010694-199601000-00003.

26. Pozdnyakov Sh.R. Nanosy v rekakh, ozerakh i vodokhranilishchakh v rasshirennom diapazone razmera chastits [Sediments in rivers, lakes and reservoirs in a wider range of grain size], Avtoref. dokt. geogr. nauk, St. Peterburg, 2011, 40 p. (In Russian)

27. Rossinskii K.I., Debol’skii V.K. Rechnye nanosy [River sediments], Moscow, Nauka Publ., 1980, 216 p. (In Russian)

28. Savenko V.S. O podobii integral’nogo khimicheskogo sostava materikovogo stoka i verkhnei chasti kontinental’noi kory [On the similarity between the chemical compositions of the integral continental runoff and the upper continental crust], Geochemistry International, 2010, no. 4, p. 419–421.

29. Sediment Cascades: An Integrated Approach, T.P. Burt, R.J. Allison (eds.), N.Y., Wiley & Sons Publ., 2010, 471 p., DOI: 10.1002/9780470682876.

30. Shamov G.I. Rechnye nanosy [River sediments], Leningrad, Gidrometeoizdat Publ., 1959, 378 p. (In Russian)

31. Sovremennye problemy eroziovedeniya: monografiya [Actual issues of erosion studies], F.N. Lisetskii, A.A. Svetlichnyi, S.G. Chernyi, A.A. Svetlichny (eds.), NIU BelGU, Belgorod, Konstanta Publ., 2012, 456 p. (In Russian)

32. Tipping E. Colloids in the aquatic environment, Chem. Ind., 1988, vol. 15, p. 485–490.

33. Vanmaercke M., Zenebe A., Poesen J., Nyssen J., Verstraeten G., Deckers J. Sediment dynamics and the role of flash floods in sediment export from medium-sized catchments: A case study from the semi-arid tropical highlands in northern Ethiopia, Journal of Soils and Sediments, 2010, vol. 10(4), p. 611– 627, DOI: 10.1007/s11368-010-0203-9.

34. Wentworth C.K. A Scale of Grade and Class Terms for Clastic Sediments, Journal Geol., 1922, vol. 30(5), p. 377–392.

35. Wilkinson K.J., Lead J.R. Environmental Colloids and Particles: Behaviour, Separation and Characterisation, N.Y., Wiley & Sons. Publ., 2007, 687 p., DOI: 10.1002/9780470024539.

36. Yanin E.P. Ruslovye otlozheniya ravninnykh rek (geokhimicheskie osobennosti uslovii formirovaniya i sostava) [Channel deposits of lowland rivers (geochemical features of formation and composition)], Moscow, IMGRE Publ., 2002, 139 p. (In Russian)

37. Zaslavskii M.N. Eroziovedenie [Erosian studies], Moscow, Vysshaya Shkola Publ., 1983, 320 p. (In Russian)


Review

For citations:


Chalov S.R., Efimov V.A. Particulate composition of suspended sediments: characteristics, classifications and spatial variability. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2021;(4):91-103. (In Russ.)

Views: 905


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)