Preview

Lomonosov Geography Journal

Advanced search

Seasonal and long-term changes of turbulent heat fluxes between sea and atmosphere in western sector of the Russian Arctic

Abstract

The current regime of turbulent heat exchange with the atmosphere over the Barents and Kara Seas was investigated, and its spatial, seasonal and temporal variability during 1979–2018 was estimated by the root-mean-square deviation values. It is shown that in recent decades the localization of the centers of maximum energy exchange between the sea surface and the atmosphere was practically the same as in the middle and second half of the 20th century. The highest seasonal and synoptic variability of heat fluxes is typical for the central and western parts of the Barents Sea. In the cold season both indicators of variability are 2–5 and more times higher than in the warm season, and the spatial heterogeneity of variability indicators in winter is about twice that in summer. Quantitative estimates have shown that winter spatial variability of fluxes within the Barents Sea may exceed summer values 5 to 10 times or more. The most pronounced heterogeneity of fluxes field over the Kara Sea is typical for autumn and early winter seasons.
Calculated annual amounts of sensible and latent heat fluxes from the surface of the Barents Sea exceed the values for the Kara Sea by an average of 3–4 and 5–6 times, respectively; and in some years they may differ by tens of times. For the period under study no single trend of the annual magnitude of integral sensible and latent heat fluxes over the water area was recorded, although there are multi-years decadal fluctuations. It is shown that, despite the significant difference in thermal regime of the Barents and Kara seas and lower atmosphere above them, the inter-annual changes in the total turbulent flows are quite well synchronized. This indicates the common character of large-scale hydrometeorological processes, influencing the energy exchange between the seas and the atmosphere.

About the Authors

G. V. Surkova
Lomonosov Moscow State University
Russian Federation

Faculty of Geography, Department of Meteorology and Climatology, Professor, D.Sc. in Geography



V. A. Romanenko
Lomonosov Moscow Sta te University
Russian Federation

Faculty of Geography, Department of Meteorology and Climatology, student



References

1. Alekseev G.V. Projavlenie i usilenie global’nogo poteplenija v Arktike [Manifestation and intensification of global warming in the Arctic], Fundamental and applied climatology, 2015, no. 1, p. 11– 26. (In Russian)

2. Atlas Arktiki [Atlas of the Arctic], A.F. Treshnikov (ed.), Moscow, Main Directorate of Geodesy and Cartography under the Council of Ministers of the USSR, 1985, 204 p. (In Russian)

3. Berrisford P., Dee D., Poli P., Brugge R., Fielding K., Fuentes M., Kallberg P., Kobayashi S., Uppala S., Simmons A. The Era-Interim archive. Version 2.0, ERA Rep. Ser. no. 1 (Tech. Rep.), European Centre for Medium-Range Weather Forecasting (ECMWF), UK, Reading, 2011, 27 p.

4. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Kobayashi P., Andrae S.U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.J., Park B.K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.N., Vitart F. The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q.J.R. Meteorol. Soc., 2011, vol. 137, p. 553–597.

5. Ding Q., Schweiger A., L’Heureux M., Battisti D.S., PoChedley S., Johnson N.C., Blanchard-Wrigglesworth E., Harnos K., Zhang Q., Eastman R., Steig E.J. Influence of high – latitude atmospheric circulation changes on summertime Arctic sea ice, Nature Climate Change, 2017, no. 7(4), p. 289–295.

6. Doklad ob osobennostjah klimata na territorii Rossijskoj Federacii za 2019 god [Report on the peculiarities of the climate in the territory of the Russian Federation for 2019], Moscow, 2020, 97 p. (In Russian)

7. Gidrometeorologija i gidrohimija morej SSSR, t. 1, Barentsevo more, vyp. 1, Gidro-meteorologicheskie uslovija [Hydrometeorology and hydrochemistry of the seas of the USSR, vol. 1, The Barents Sea, iss. 1, Hydro-meteorological conditions], F.S. Terziev (ed.), Leningrad, Gidrometeoizdat Publ., 1990, 280 p. (In Russian)

8. IPCC. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.), Cambridge, Cambridge University Press, United Kingdom and New York, USA, 2013, 1535 p.

9. Ivanov V.V., Varentsov M.I., Matveeva T.A., Repina I.A., Artamonov A., Khavina E. Arctic Sea Ice Decline in the 2010s: The Increasing Role of the Ocean – Air Heat Exchange in the Late Summer, Atmosphere, Molecular Diversity Preservation International (Switzerland), 2019, vol. 10, no. 4, p. 184.

10. Kislov A., Matveeva T. The Monsoon over the Barents Sea and Kara Sea,Atmospheric and Climate Sciences, 2020, vol. 10, p. 339–356.

11. Korablev A., Smirnov A., Baranova O. Climatological Atlas of the Nordic Seas and Northern North Atlantic, D. Seidov, A.R. Parsons (eds.), NOAA Atlas NESDIS 77, 2014, 122 p., dataset, DOI: 10.7289/V54B2Z78.

12. Lappo S.S., Gulev S.K., Rozhdestvenskij A.E. Krupnomasshtabnoe teplovoe vzaimodejstvie v sisteme okeanatmosfera i energoaktivnye oblasti Mirovogo okeana [Large-scale thermal interaction in the ocean – atmosphere system and the energyactive regions of the World Ocean], Leningrad, Gidrometeoizdat Publ., 1990, 336 p. (In Russian)

13. Lindsay R., Wensnahan M., Schweiger A., Zhang J. Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic, Journal of Climate, 2014, vol. 27, p. 2588–2606.

14. Muilwijk M., Smedsrud L.H., Ilicak M., Drange H. Atlantic Water heat transport variability in the 20th century Arctic Ocean from a global ocean model and observations, Journal of Geophysical Research: Oceans, 2018, vol. 123, p. 8159–8179, DOI: 10.1029/2018JC014327.

15. Proshutinsky A., Johnson M. Two circulation regimes of the wind driven Arctic Ocean, Journal of Geophysical Research, 1997, vol. 102, p. 12493–12512.

16. Repina I.A., Artamonov A.Ju. Turbulentnyj teploobmen atmosfery i podstilajushhej poverhnosti v pribrezhnoj zone Antarktiki po dannym instrumental’nyh nabljudenij [Turbulent heat exchange of the atmosphere and underlying surface in the coastal zone of Antarctica according to instrumental observations], Meteorology and Hydrology, 2020, no. 2, p. 45– 52. (In Russian)

17. Repina I.A., Artamonov A.Ju., Smirnov A.S., Chechin D.G. [Study of the interaction of the ocean and the atmosphere in the polar regions within the framework of the international polar year 2007/08], Meteorologicheskie i geofizicheskie issledovaniya [Meteorological and geophysical researches], Moscow, St. Petersburg, Paulsen AARI Publ., 2011, p. 236–250. (In Russian)

18. Rudeva I., Gulev S.K. Climatology of cyclone size characteristics and their changes during the cyclone life cycle, Monthly Weather Review. American Meteorological Society (United States), 2007, vol. 135, p. 2568–2587.

19. Selivanova Ju.V., Tilinina N.D., Gulev S.K., Dobroljubov S.A. Impact of Ice Cover in the Arctic on Ocean – Atmosphere Turbulent Heat Fluxes, Oceanology, 2016, vol. 56, no. 1, p. 14–18.

20. Serreze M.C., Barry R.G. Processes and impacts of Arctic amplification: A research synthesis, Global Planet Change, 2011, vol. 77, p. 85–96.

21. Surkova G.V., Krylov A.A. Sinopticheskie situacii, sposobstvujushhie formirovaniju jekstremal’nyh znachenij skorosti vetra v Barencevom more [Synoptic situations contributing to the formation of extreme wind speed values in the Barents Sea], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2016, no. 6, p. 18–25. (In Russian)

22. Tilinina N.D., Gulev S.K., Gavrikov A.V. Formation of Extreme Surface Turbulent Heat Fluxes from the Ocean to the Atmosphere in the North Atlantic, Oceanology, 2016, vol. 56, no. 1, p. 1–5.

23. Vtoroj ocenochnyj doklad Rosgidrometa ob izmenenijah klimata i ih posledstvijah na territorii Rossijskoj Federacii [Second Assessment Report of Roshydromet on Climate Changes and Their Consequences on the Territory of the Russian Federation], Moscow, Roshydromet Publ., 2014, 1008 p. (In Russian)

24. Wang Y., Bi H., Huang H., Liu Yanxia, Liu Yilin, Xi L., Fu M., Zhang Z. Satellite-observed trends in the Arctic sea ice concentration for the period 1979–2016, Journal Ocean. Limnol., 2019, vol. 37, p. 18–37, DOI: 10.1007/s00343-019-7284-0.

25. Zabolotskih E.V., Mjasoedov A.G. Prostranstvennovremennaja izmenchivost’ morskogo l’da v Barencevom more po dannym izmerenij sputnikovyh mikrovolnovyh radiometrov [Spatial and temporal variability of the Barents Sea ice retrieved from satellite passive microwave radiometer data], Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa, 2017, vol. 14, no. 5, p. 195–208. (In Russian)

26. Zhou C., Wang K. Evaluation of Surface Fluxes in ERA-Interim Using Flux Tower Data, Journal of Climate, 2016, vol. 29, p. 1573– 1582.

27. Web sources Boeke R.C., Taylor P.C. Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming, Nat Commun., 2018, vol. 9, 5017, DOI: 10.1038/s41467-018-07061-9 (access date 22.11.2019).

28. ECMWF (The European Centre for Medium-Range Weather Forecasts), ERA-Interim Reanalysis, URL: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (access date 22.11.2019).

29. NOAA (National Oceanic and Atmospheric Administration, USA), URL: https://www.cpc.ncep.noaa.gov/data/teledoc (access date 15.11.2020).


Review

For citations:


Surkova G.V., Romanenko V.A. Seasonal and long-term changes of turbulent heat fluxes between sea and atmosphere in western sector of the Russian Arctic. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2021;(4):74-82. (In Russ.)

Views: 603


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)