Impact of regional power plants on air pollution in Russian cities
Abstract
The article discusses the main trends in the nature of atmospheric pollution by large thermal power plants. The stages of formation of the modern Russian energy system are identified. The power plants were built farther from the cities gradually shifting from large cities to medium and small cities and urbantype settlements. Regional electric power plants as a basic element of the country’s energy system are much more dependent on the economic situation than CHP plants. The amount of energy produced and the fuel consumption of regional electric power plants decreases faster in crisis years. The dynamics and structure of regional electric power plants emissions depend on three main factors, i. e. capacity utilization; fuel balance structure; and modernization and creation of new treatment facilities. The share of gas-burning plants in total emissions of regional power plants is three times less than their share in the total capacity. On the other hand, coal-based electricity generation accounts for 78% of emissions that is 2.7 times more than their share in the total capacity. The modern period is characterized mostly by modernization of the first-generation power plants rather than construction of new ones. Thus the emissions are reduced, their structure is transformed and the area of pollution becomes smaller. Case study of the impact of the Kashira regional power plant on the air quality shows that atmospheric emissions reduced significantly due to modernization. The main air pollutants near the Kashira regional power plant are particulate matters and sulphur dioxide, while carbon oxide is the least contributor to air pollution.
Keywords
About the Authors
V. R. BityukovaRussian Federation
Department of Economic and Social Geography of Russia, Professor, D.Sc. in Geography
V. S. Dehnich
Russian Federation
Department of Ecology and Nature Management, Lecturer
N. V. Petuhova
Russian Federation
Consultant
References
1. Bityukova V.R., Burdenko V.O., Urezchenko V.M. Novye metody izucheniya arealov atmosfernogo zagryazneniya predpriyatii teploenergetiki (na primere Moskovskoi oblasti) [New Methods for Studying Areas of Atmospheric Pollution by Heat Power Industry Enterprises (case study of the Moscow Region)], Problemy regional’noi ekologii, 2003, no. 5, p. 29–39. (In Russian)
2. Bityukova V.R., Kasimov N.S. Atmospheric pollution of Russia’s cities: assessment of emissions and immissions based on statistical data, GEOFIZIKA, 2012, vol. 29, p. 53–67.
3. Bityukova V.R., Petukhova N.V. Regional’nye i subregional’nye kontrasty promyshlennogo zagryazneniya vozdushnogo basseina Rossii v 2008–2016 gg. [Regional and subregional contrasts of industrial air pollution in Russia in 2008–2016], Ekologiya i promyshlennost’ Rossii, 2018, vol. 22, no. 5, p. 17–23, DOI: 10.18412/1816-0395-2018-5-17-23. (In Russian)
4. Demin V.F., Vasil’ev A.P., Krylov D.A. [Procedures and methods for comparative assessment of the environmental risk of different methods of electricity production], Problemy otsenki riska zagryazneniya poverkhnostnykh i podzemnykh vod v strukture TEK, Sbornik nauchnykh trudov OAO "Gazprom", OOO "VNIIgaz" [Problems of assessing the risk of pollution of surface and ground waters in the structure of the fuel and energy complex, Collection of scientific works of OJSC "Gazprom", Vniigaz LLC], Moscow, Nauka Publ., 2001, p. 135–145. (In Russian)
5. Dmitrievskii A.N., Mastepanov A.M., Krotova M.V. Energeticheskie prioritety i bezopasnost’ Rossii (neftegazovyi kompleks) [Energy priorities and safety of Russia (oil and gas complex)], A.M. Mastepanova (ed.), Moscow, OOO "Gazprom ekspo" Publ., 2013, 336 p. (In Russian)
6. Douglas W., Dockery Sc.D. Cardiovascular Risks from Fine Particulate Air, New England Journal of Medicine, 2007, vol. 356, no. 5, p. 511–513
7. GOST R 50831-95. Teplomehanicheskoe oborudovanie. Obshhie tehnicheskie trebovanija [Boiler plants. Heat-mechanical equipment. General technical requirements], Moscow, Izdatelstvo Standartov Publ., 1996, 24 p. (In Russian)
8. GOST R 51586-2000. Ugli burye, kamennye i antracity Kuzneckogo i Gorlovskogo bassejnov dlja jenergeticheskih celej. Tehnicheskie uslovija [Brouw coals, hard coal and anthracites of Kuznetsk and Gorlovka basins for power supply purposes. Specification], Moscow, Izdatelstvo Standartov Publ., 2003, 10 p. (In Russian)
9. GOST R 51971-2002. Ugli Vostochnoj Sibiri dlja jenergeticheskih celej. Tehnicheskie uslovija [East Siberia coals for power supply and technological purposes. Specifications], Moscow, Izdatelstvo Standartov Publ., 2003, 6 p. (In Russian)
10. GOST R 51972-2002. Ugli Vostochnoj Sibiri dlja jenergotehnologicheskih celej. Tehnicheskie uslovija [East Siberia coals for power supply and technological purposes. Specifications], Moscow, Izdatelstvo Standartov Publ., 2003, 7 p. (In Russian)
11. Grachev V.A. Energeticheskie tekhnologii i ustojchivoe razvitie [Energy technology and sustainable development], Ekologiya i promyshlennost’ Rossii, 2019, vol. 23, no. 10, p. 56–60, DOI: 10.18412/1816-0395-2019-10-61-65.
12. Henkel J., Kunde R., Gaderer M. and Erdmann G.Assessment of Global Emissions, Local Emissions and Immissions of Different Heating Systems, Sustainability, 2009, vol. 1, p. 494–515.
13. Judovich Ja.Je., Kertis M.P. Toksichnye jelementy-primesi v iskopaemyh ugljah [Toxic trace elements in fossil coals], 2-nd edition, Moscow; Berlin, Direkt-Media, 2015, 648 p. (In Russian)
14. Krylov D.A., Krylov E.D., Putintseva V.P. Otsenki vybrosov v atmosferu SO 2, NOx, tverdykh chastits i tyazhelykh metallov pri rabote TES, ispol’zuyushchikh kuznetskii i kansko-achinskii ugol’ [Estimates of emissions of SO2, NOx, solid particles and heavy metals into the atmosphere during the operation of thermal power plants using Kuznetsk and Kansk-Achinsk coal], Byulleten’ po atomnoi energii, 2005, no. 4, p. 32–36. (In Russian)
15. Kumar U., Jain V.K. Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India, Energy, 2010, no. 35, p. 1709–1716.
16. Nagvi A., Zwickl K. Fifty shades of green, Revisiting decoupling by economic sector and air pollutants, Ecological Economics, 2017, vol. 133, p. 111–126
17. Pacyna E.G., Pacyna J.M., Sundseth K., Munthe J., Kindbom K., Wilson S., Steenhuisen F., Maxson P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020, Atmospheric Environment, 2010, vol. 44, p. 2487–2499.
18. Pope C.A. Health Effects of Fine Particulate Air Pollution: Lines that Connect, Journal of Air & Waste Management Association, 2006, vol. 56, p. 709–742.
19. Revich B.A. Melkodispersnye vzveshennye chastitsy v atmosfernom vozdukhe i ikh vozdeistvie na zdorov’e zhitelei megapolisov [Finely dispersed particulate matter in the atmospheric air and the impact on residents’ health in megalopolises], Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem, 2018, vol. ХХIX, no. 3, p. 53–78. (In Russian)
20. The World Atlas of Atmospheric Pollution. Sokhi R.S. (ed.), Anthem Press, 2008, 345 p.
21. Tian H.Z., Zhou J.R., Zhu C.Y., Zhao D., Gao J.J., Hao J.M., He M.C., Liu K.Y., Wang K., Hua S.B. A Comprehensive global inventory of atmospheric antimony emissions from anthropogenic activities, 1995–2010, Environmental Science & Technology, 2014, vol. 48, p. 10 235–10 241.
22. Timofeev I., Kosheleva N., Kasimov N. Health risk assessment based on the contents of potentially toxic elements in urban soils of Darkhan, Mongolia, Journal of Environmental Management, 2019, vol. 242, p. 279–289.
23. Zhu C.,Tian H.,Hao J. Global anthropogenic atmospheric emission inventory of twelve typical hazardous trace elements, 1995–2012, Atmospheric Environment, 2020, vol. 220, p. 117061, DOI: 10.1016/j.atmosenv.2019.117061.
24. Web sources Baza dannykh Rosprirodnadzora [Rosprirodnadzor Database], 2018, URL: http://rpn.gov.ru/opendata (access date 08.07.2020). (In Russian)
25. Dry Deposition, EMEP Report 1 (2003), part. 8, URL: http://emep.int/UniDoc/node11.html (access date 20.11.2019).
26. European Space Agency (ESA), 2015, Climate research data package (CRDP), URL: http://maps.elie.ucl.ac.be/CCI/viewer/download.php. https://doi.org/10.1016/j (access date 20.01.2020)
27. Ezhegodnik zagryazneniya atmosfery v gorodakh na territorii Rossii za 2018 god, Sankt-Peterburg [Yearbook of air pollution in cities in Russia for 2018. St. Petersburg], 2018, 234 p., URL: http://www.meteorf.ru/product/infomaterials/ezhegodniki/ (access date 06.07.2020). (In Russian)
28. IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara and K. Tanabe (eds.), Published, IGES, Japan, URL: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_0_Cover.pdf (access date 20.01.2020).
29. Metody raschetov rasseivaniya vybrosov vrednykh (zagryaznyayushchikh) veshchestv v atmosfernom vozdukhe (utv. Prikazom Minprirody RF no. 273 ot 06.06.2017 "Ob utverzhdenii metodov raschetov rasseivaniya vybrosov vrednykh (zagryaznyayushchikh) veshchestv v atmosfernom vozdukhe") [Methods for calculating the dispersion of emissions of harmful (polluting) substances in the atmospheric air (approved by Order of the Ministry of Natural Resources of the Russian Federation, no. 273 dated 06.06.2017 "On approval of methods for calculating the dispersion of emissions of harmful (polluting) substances in the atmospheric air")], URL: https://minjust.consultant.ru/documents/36322?items=1 (access date 22.05.2020). (In Russian)
30. Okhrana okruzhayushchei sredy v Rossii. Statisticheskii sbornik (Rosstat), 2019, 2010, 2012, 2014, 2016, 2018 [Environmental protection in Russia. Statistical collection (Rosstat), 2019, 2010, 2012, 2014, 2016, 2018], URL: http://www.gks.ru (access date 10.02.2020). (In Russian)
31. Osnovnye pokazateli okruzhayushchei sredy: statisticheskii byulleten’, Moscow, Federal’naya sluzhba gosudarstvennoi statistiki (Rosstat) [Environmental Key Indicators: Statistical Bulletin. Moscow, Federal State Statistics Service (Rosstat) 2009, 2011, 2013, 2015, 2017, 2019], URL: http://www.gks.ru (access date 10.06.2020). (In Russian)
32. Pokazateli munitsipal’nykh obrazovanii. Federal’naya sluzhba gosudarstvennoi statistiki (Rosstat), 2018 [Indicators of municipalities. Federal State Statistics Service (Rosstat), 2018], URL: http://www.gks.ru (access date 10.07.2020). (In Russian)
33. Promyshlennost’ Rossii, Rosstat, 2019 [Industry of Russia, Rosstat, 2019], URL: http://www.gks.ru (access date 20.11.2019). (In Russian)
34. Szhiganie topliva na krupnykh ustanovkakh v tselyakh proizvodstva energii, Moskow, Byuro NDT, 2017 [Combustion of fuels in large installations for the purpose of energy production, Moscow, Bureau of the Best Available Technics, 2017], URL: http://old.gost.ru/wps/wcm/connect/e7a9078043db0e39914fd567c7308a4d/%D0%A4%D0%B0%D0%B9%D0%BB_16.1.pdf?MOD=AJPERES (access date 22.05.2020). (In Russian)
Review
For citations:
Bityukova V.R., Dehnich V.S., Petuhova N.V. Impact of regional power plants on air pollution in Russian cities. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2021;(4):38-51. (In Russ.)