Preview

Lomonosov Geography Journal

Advanced search

Mechanism of generating two types of El Niño under modern climatic conditions

Abstract

The contribution of horizontal and vertical advection and nonlinear dynamic heating to the formation of positive sea surface temperature anomaly during two types of El Niño is evaluated from the analysis of the ocean upper mixed layer heat budget using the GLORYS2v4 reanalysis data. The oceanic processes responsible for the increasing temperature anomaly during canonical and Modoki El Niños were identified for the modern climatic conditions (1992–2015). It is demonstrated that during the development phase of both types of El Niño the vertical and horizontal advection results in the growth of the upper mixed layer heat budjet in the tropical parts of the Pacific. The vertical advection plays the key role in the formation of heat anomaly in the eastern tropical Pacific for both El Niños while the horizontal advection prevails in the central tropical Pacific. The difference between the mechanism of heat content anomaly formation for canonical and Modoki El Niño is due to the different intensity of temperature growth. Moderate El Niños are characterized by intensive heating in the central tropical Pacific caused by zonal and meridional advection. During strong El Niños the contribution of vertical advection increases, especially in the eastern Pacific. Nonlinear dynamic heating is not supportive of the positive temperature anomaly growth, even causing the anomaly decrease in some cases.

About the Authors

A. M. Osipov
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Meteorology and Climatology, post-graduate student


D. Yu. Gushchina
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Meteorology and Climatology, Professor, D.Sc. in Geography


References

1. Ashok K., Behera S.K., Rao S.A., Weng H., Yamagata T. El Nińo Modoki and its possible teleconnection. Journal of Geophysical Research: Oceans, 2007, vol. 112, iss. C11, C11007.

2. An S.-I, Jin F.-F. Nonlinearity and asymmetry of ENSO. Journal of Climate, 2004, vol. 17, p. 2399–2412.

3. Bjerknes J. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 1969, vol. 97, p. 163–172.

4. Cai W., Borlace S., Lengaigne M., van Rensch P., Collins M., Vecchi G., Timmermann A., Santoso A., McPhaden M.J., Wu L., England M.H., Wang G., Guilyardi E., Jin F.F. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 2014, vol. 4, p. 111–116.

5. Cai W., Wang G., Dewitte B., Wu L., Santoso A., Takahashi K., Yang Y., Carreric A., McPhaden M.J. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 2018, vol. 564. p. 201–206.

6. Jin F.F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. Journal of the Atmospheric Sciences, 1997, vol. 54, no. 7, p. 811–829.

7. Jin F.-F., An S.-I., Timmermann A., Zhao J. Strong El Niño events and nonlinear dynamical heating. Geophysical Research Letters, 2003, vol. 30, 1120.

8. Jin F.-F., Kim S.T., Bejarano L. A coupled-stability index for ENSO. Geophysical Research Letters, 2006, vol. 33, L23708.

9. Kao H.Y., Yu J.Y. Contrasting eastern-Pacific and central-Pacific types of ENSO. Journal of Climate, 2009, vol. 22, no. 3, p. 615632.

10. Kim W., Cai W, Kug J.-S. Migration of atmospheric convection coupled with ocean currents pushes El Niño to extremes. Geophysical Research Letters, 2015, vol. 42, p. 3583–3590.

11. Kug J.S., Jin F.F., An S.I. Two types of El Niсo events: cold tongue El Niño and warm pool El Niño. Journal of Climate, 2009, vol. 22, no. 6, p. 1499–1515.

12. Osipov A.M., Gushchina D.Yu. El Niño 2015–2016 gg.: evoljucija, mehanizmy, soputstvujushhie udalennye anomalii [El Niño 2015–2016: evolution, mechanisms and related anomalies]. Fundamental’naja i prikladnaja klimatologija, 2018, vol. 3, p. 54–81. (In Russian)

13. Rasmusson E.M., Carpenter T.H. Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño. Monthly Weather Review, 1982, vol. 110, p. 354–384.

14. Santoso A., McPhaden M.J., Cai W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Reviews of Geophysics, 2017, vol. 55, p. 1079–1129.

15. Takahashi K., Montecinos A., Goubanova K., Dewitte B. ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophysical Research Letters, 2011, vol. 38, no. 10, L10704.

16. Takahashi K., Dewitte B. Strong and moderate nonlinear El Niño regimes. Climate Dynamics, 2016, vol. 46, p. 1627–1645.

17. Takahashi K., Karamperidou C., Dewitte B. A theoretical model of strong and moderate El Niño regimes. Climate Dynamics, 2018, vol. 52, p. 7477–7493.

18. Wang B., Luo X., Yang Y.-M., Sun W., Cane M.A., Cai W., Yeh S.-W., Liu J. Historical change of El Niño properties sheds light on future changes of extreme El Niño. PNAS, 2019, vol. 116, p. 22 512–22 517.

19. Yeh S.-W., Kug J.-S., Dewitte B., Kwon M.-H., Kirtman B.P., Jin F.F. El Niño in a changing climate. Nature, 2009, vol. 461, p. 511–514.

20. Zheleznova I.V. Otklik v sisteme okean-atmosfera na canonicheskoe El Niño i El Niño Modoki [The response of the ocean-atmosphere system to canonical and Modoki El Niño]. PhD Thesis in Geography, Moscow, 2015, 264 p. (In Russian)

21. Quality information document for global ocean reanalysis products global-reanalysis-PHY-001-025. Copernicus Marine Environment Monitoring Service, URL: https://resources.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-025.pdf (access date 04.10.2019).


Review

For citations:


Osipov A.M., Gushchina D.Yu. Mechanism of generating two types of El Niño under modern climatic conditions. Lomonosov Geography Journal. 2021;(1):128-135. (In Russ.)

Views: 709


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)