Preview

Lomonosov Geography Journal

Advanced search

Catenary biogeochemical differentiation in the southern taiga landscapes (Central Forest Reserve, Tver Oblast)

Abstract

A landscape-geochemical catena with Albic Retisols (Loamic) under coniferous-deciduous forest on loess-like loams underlain by carbonate moraine deposits located in the southern part of the Central Forest Reserve on a gentle interfluve slope was studied to evaluate the migration of trace elements in the soil–plant system. Biogeochemical differentiation of landscapes was analyzed basing on Mn, Fe, Zn, Sr, Cu, Ni, Cr and Pb concentrations in parent rocks, soils and plants. Soils of the catens have near-clarke content of Mn and Pb and lower content of Cu, Fe, Zn, Ni, Sr and Cr. In the upper part of the catena, A and O-horizons are enriched in Pb, Mn and Zn. E-horizon is depleted in Fe, Ni, Sr and Zn. B-horizon has a higher content of Cr, Ni and Cu and a lower content of Sr and Mn. Ash proportions in studied coniferous and broadleaved species of coniferous-decidous forests are 1–4 and 1–8% respectively, while it is 3–12% for the aboveground parts of grasses. The studied plant species contain near-clarke amounts of Cu, Zn and Ni. Branches and bark of woody plants are depleted in Fe and Cr, while sphagnum has lower content of Sr. Within the lower part of catena Fe content in plants decreases and this of Mn increases. Within the upper part of catena where plant leaves and needles accumulate Mn, Cu, Sr and Zn more actively than within its lower part, the element concentrations in plant organs differ slightly. Spatial differentiation of the total content decreases from Mn, Ni and Fe to Zn, Sr and Cu. Trees are the most active in the uptake and turnover of biophilic Mn and Zn while sphagnum and grasses mostly accumulate Fe, Cr and Pb. At the catena (toe)slope grass-shrub plants and tree leaves accumulate Cu. In the landscapes of the upper part of catena metals show more even distribution compared to the lower part where photosynthetic organs of plants accumulate Mn, Cu, Sr and Zn. Concentrations of Mn, Ni and Fe show the highest differentiation along the catena, while Zn, Sr and Cu are evenly distributed. Needles of Picea abies most intensively accumulate Mn in all landscapes (especially in hydromorphic). The photosynthetic organs of Picea abies, Tilia cordata, Salix caprea and Sphagnum have the greatest biogeochemical activity with the main contribution of Mn, Cu, Sr, Zn and Ni. The lowest biogeochemical activity is characteristic of Acer platanoides and Ulmus glabra.

About the Authors

P. R. Enchilik
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, PhD student


I. N. Semenkov
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Scientific Researcher, PhD. in Geography


E. N. Aseeva
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Senior Scientific Researcher, PhD. in Geography


O. A. Samonova
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Leading Scientific Researcher, PhD. in Geography


A. D. Iovcheva
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Technician, graduate student


E. V. Terskaya
Lomonosov Moscow State University
Russian Federation

Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Scientific Researcher



References

1. Aleksandrova L.M., Lyuzhin M.F., Arshavskaya V.F. Gumusovye veshchestva pochvy (ih obrazovanie, sostav, svojstva i znachenie v pochvoobrazovanii i plodorodii) [Humic substances of the soil (their formation, composition, properties and significance for soil formation and fertility)], Zapiski Leningr. s-h. in-ta, 1970, vol. 142, 233 p. (In Russian)

2. Avessalomova I.A. Biogeohimija landshaftov [Biogeochemistry of landscapes], Moscow, MSU Faculty of Geography Publ., 2007, 163 p. (In Russian)

3. Avessalomova I.A. Biogeohimicheskaya spetsializatsiya rastenij polesskih landshaftov Ozernoj Meschery [Biogeochemical specialization of plants in Polesye landscapes of the Meschera Lakeland]. Vestn. Mosk. un-ta, Ser. 5, Geogr., 2020, no. 5, p. 63–72.

4. Bade C., Jacob M., Leuschner C., Hauck M. Chemical properties of decaying wood in an old-growth spruce forest and effects on soil chemistry, Biogeochemistry, 2015, vol. 122, p. 1–13. DOI: 10.1007/s10533-014-0015-x.

5. Bazilevich N.I., Titlyanova A.A. Bioticheskij krugovorot na pjati kontinentah: azot i zol’nye elementy v prirodnyh nazemnyh ekosistemah [Biotic cycle on five continents: nitrogen and ash elements in natural terrestrial ecosystems], Novosibirsk, Nauka Publ., 2007, 381 p. (In Russian)

6. Gandois L., Probst A. Localisation and mobility of trace metal in silver fir needles, Chemosphere, 2012, vol. 87, p. 204–210. DOI: 10.1016/j.chemosphere.2011.12.020.

7. Herndon E., Yarger B., Frederick H., Singer D. Iron and Manganese Biogeochemistry in Forested Coal Mine Spoil, Soil systems, 2019, vol. 3, no. 1, p. 13. DOI: 10.3390/soilsystems 3010013.

8. Hu Z., Gao S. Upper crustal abundances of trace elements: A revision and update, Chemical Geology, 2008, vol. 253, no. 3–4, p. 205–221. DOI: 10.1016/J.CHEMGEO.2008.05.010.

9. Huang J.-H., Ilgen G., Matzner E. Fluxes and budgets of Cd, Zn, Cu, Cr and Ni in a remote forested catchment in Germany, Biogeochemistry, 2011, vol. 103, no. 1–3, p. 59–70. DOI: 10.1007/s10533-010-9447-0.

10. Isachenkova L.B., Tarzaeva M.V. [Comparative biogeochemical characteristics of forest ecosystems], Ekosistemy shirokolistvennohvojnyh lesov juzhnogo Podmoskov’ja [Ecosystems of broadleavedconiferous forests in the southern part of the Moscow region]. Moscow, MSU Faculty of Geography Publ., 2006, p. 84–97. (In Russian)

11. Kabata-Pendias A. Trace Elements in Soils and Plants. CRC Press, 2011, 548 p.

12. Karavanova E.I., Belyanina L.A., Shapiro A.D., Stepanov A.A. Effect of litters on the mobility of zinc, copper, manganese, and iron in the upper horizons of podzolic soils. Eurasian Soil Science, 2006, vol. 39, no. 1, p. 35–43. DOI: 10.1134/S1064229309070035.

13. Karavanova E.I., Malinina M.S. Spatial Differentiation of the Chemical Composition of Solid and Liquid Phases in the Main Soil Types of the Central Forest State Natural Biospheric Reserve, Eurasian Soil Science, 2009, vol. 42, no. 7, p. 725–737.

14. Kasimov N.S., Lychagin M.Ju., Chalov S.R., Shinkareva G.L. Parageneticheskie assotsiatsii himicheskih elementov v landshaftah [Paragenetic associations of chemical elements in landscapes]. Vestn. Mosk. un-ta, Ser. 5, Geogr., 2019, no. 6, p. 20–28. (In Russian)

15. Lukina N.V., Orlova M.A., Bakhmet O.N., Tikhonova E.V., Tebenkova D.N., Kasakova A.I., Gornov A.V., Smirnov V.E., Knyazeva S.V., Bakhmet O.N., Kryshen A.M., Shashkov M.P., Ershov V.V. The Influence of Vegetation on the Forest Soil Properties in the Republic of Karelia, Eurasian Soil Science, 2019, vol. 52, no. 7, p. 793–807. DOI: 10.1134/S1064229319050077.

16. Makarova O.A. Ekologicheskaja ocenka soderzhanija tjazhelyh metallov v sisteme voda-pochva-rastenie v priruslovoj chasti pojmy reki Irtysh [Environmental assessment of heavy metals content in the water-soil-plant system in the near-river part of the Irtysh River floodplain], PhD Thesis in Biology. Omsk, Om. gos. ped. un-t Publ., 2009, 113 p. (In Russian)

17. Market B., Franzle S., Wunschmann S. Chemical evolution and the biological system of the elements. Heidelberg, Springer, 2015, 282 p.

18. Nikonov V.V., Lukina N.V., Bezel’ V.S. Bel’skij E.A., Bespalova A.Yu., Golovchenko A.V., Gorbacheva T.T., Dobrovol’skaya T.G., Dobrovol’skij V.V., Zukert N.V., Isaeva L.G., Lapenis A.G., Maksimova I.A., Marfenina O.E., Panikova A.N., Pinskij D.L., Polyanskaya L.M., Stajnnes E., Utkin A.I., Frontas’eva M.V., Cibul’skij V.V., Chernov I.Yu., YacenkoHmelevskaya M.A. Rassejannye elementy v boreal’nyh lesah [Trace elements in boreal forests], Moscow, Nauka Publ., 2004, 616 p.

19. Peng K.J., Luo C.L., You W.X. Manganese uptake and interactions with cadmium in the hyperaccumulator – Phytolacca americana L. Journal of Hazardous Materials, 2008, vol. 154, no. 1–3, p. 674–681. DOI :10.1016/j.jhazmat.2007.10.080.

20. Puzachenko Yu.G., Kozlov D.N. Geomorfologicheskoe razvitie territorii Central’no-Lesnogo zapovednika [Geomorphological evolution of the Central Forest Nature Reserve territory], Trudy Central’noLesnogo zapovednika, 2007, vol. 4, p. 125–159. (In Russian)

21. Puzachenko Y., Sandlersky R., Sankovski A. Methods of Evaluating Thermodynamic Properties of Landscape Cover Using Multispectral Reflected Radiation Measurements by the Landsat Satellite, Entropy, 2013, vol. 15, no. 9, p. 3970–3982. DOI: 10.3390/e15093970.

22. Puzachenko Yu.G., Zheltukhin A.S., Kozlov D.N., Korablyov N.P., Fedyaeva M.V., Puzachenko M.Ju., Siunova E.V. Central Forest State Biosphere Reserve. Moscow, Delovoj mir Publ., 2007, 84 p.

23. Reimann C., Fabian K., Birke M., Filzmoser P., Demetriades A., Négrel P., Oorts K., Matschullat J., de Caritat P., Albanese S., Anderson M., Baritz R., Batista M.J., Bel-Ian A., Cicchella D., De Vivo B., De Vos W., Dinelli E., Ďuriš M., DuszaDobek A., Eggen O.A., Eklund M., Ernsten V., Flight D.M.A., Forrester S., Fügedi U., Gilucis A., Gosar M., Gregorauskiene V., De Groot W., Gulan A., Halamić J., Haslinger E., Hayoz P., Hoogewerff J., Hrvatovic H., Husnjak S., Jähne-Klingberg F., Janik L., Jordan G., Kaminari M., Kirby J., Klos V., Kwećko P., Kuti L., Ladenberger A., Lima A., Locutura J., Lucivjansky P., Mann A., Mackovych D., McLaughlin M., Malyuk B.I., Maquil R., Meuli R.G., Mol G., O’Connor P., Ottesen R.T., Pasnieczna A., Petersell V., Pfleiderer S., Poňavič M., Prazeres C., Radusinović S., Rauch U., Salpeteur I., Scanlon R., Schedl A., Scheib A., Schoeters I., Šefčik P., Sellersjö E., Slaninka I., Soriano-Disla J.M., Šorša A., Svrkota R., Stafilov T., Tarvainen T., Tendavilov V., Valera P., Verougstraete V., Vidojević D., Zissimos A., Zomeni Z., Sadeghi M. GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil, Applied Geochemistry, 2018, vol. 88, p. 302–318. DOI :10.1016/j.apgeochem.2017.01.021.

24. Rudnick R.L., Gao S. Composition of the Continental Crust, Treatise on Geochemistry, 2003, vol. 3, p. 1–64. DOI: 10.1016/B0-08-043751-6/03016-4.

25. Semenkov I.N., Terskaya E.V., Kasimov N.S. [Distribution of metal forms in zonal soil-geochemical catenas], Geohimija landshaftov [Landscape geochemistry]. K 100-letiju so dnja rozhdenija Aleksandra Il’icha Perel’mana. Moscow, APR Publ., 2016, p. 97–144. (In Russian)

26. Semenkov I.N., Terskaya E.V., Kasimov N.S. Lateralnaya differentsiatsiya form soedinenij metallov v pochvennyh cuglinistyh katenah tsentra Zapadno-Sibirskoj ravniny [Lateral differentiation of metal fractions in loamy soil catenas of the central part of Western Siberia Plain]. Vestn. Mosk. un-ta, Ser. 5, Geogr., 2019, no.3, p. 25–37.

27. Smirnova O.V., Zaugolnova L.B., Evstigneev O.I., Korotkov V.N., Hanina L.G. Sukcessionnye processy v zapovednikah Rossii i problemy sohranenija biologicheskogo raznoobrazija [Succession processes in the reserves of Russia and the problems of conservation of biological diversity], St. Petersburg, Rossijskoe botanicheskoe obshhestvo Publ., 1999, 549 p. (In Russian)

28. Sukhareva T.A., Lukina N.V. Mineral composition of assimilative organs of conifers after reduction of atmospheric pollution in the Kola Peninsula, Russian Journal of Ecology, 2014, vol. 45, no. 2, p. 95–102. DOI: 10.1134/S1067413614020088.

29. Terehina N.V. Metodicheskie ukazanija k provedeniju fitogeohimicheskih issledovanij: uchebno-metodicheskoe posobie [Methods for conducting phytogeochemical studies: manual], St. Petersburg, Akademia, 2010, 25 p. (In Russian)

30. Watmough, S.A., Eimers, M.C., Dillon, P.J. Manganese cycling in central Ontario forest: Response to soil acidification, Applied Geochemistry, 2007, vol. 22, no. 6, p. 1241–1247. DOI: 10.1016/j.apgeochem.2007.03.039.

31. Watmough S.A. Calcium, strontium and barium biogeochemistry in a forested catchment and insight into elemental discrimination, Biogeochemistry, 2014, vol. 118, p. 357–369. DOI: 10.1007/s10533-013-9938-x.

32. Zheleznova O.S., Chernyh N.A., Tobratov S.A. Cink i kadmij v fitomasse drevesnyh rastenij lesnyh ekosistem: zakonomernosti translokacii, akkumuljacii i bar’ernyh mehanizmov [Zinc and cadmium in tree species of forest ecosystems: patterns of translocation, accumulation and barrier mechanisms], RUDN Journal of Ecology and Life Safety, 2017, vol. 25, no. 2, p. 253–270. DOI: 10.22363/2313-2310-2017-25-2-253-270. (In Russian)


Review

For citations:


Enchilik P.R., Semenkov I.N., Aseeva E.N., Samonova O.A., Iovcheva A.D., Terskaya E.V. Catenary biogeochemical differentiation in the southern taiga landscapes (Central Forest Reserve, Tver Oblast). Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2020;(6):121-133. (In Russ.)

Views: 709


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)