Changes in vertical stability of the Laptev Sea upper layer under the ice cover shrinkage
Abstract
The main criteria of the vertical stability of water in the upper 100-meter layer of the Laptev Sea are calculated from the reconstructed spatial-temporal variability of the three-dimensional structure of temperature and salinity, obtained on the basis of numerical experiments using the regional configuration of the NEMO mathematical model adapted to the conditions of the Arctic Ocean. The modeling results are presented on a vertical section crossing both shallow and deep-water parts of the sea. The structural changes in the distribution of vertical water stability were revealed for warm periods in the beginning of the XXI century with the ice cover shrinkage. During these periods the situations favoring the development of a full vertical stability of waters are more frequent. The range of changes of the Brunt-Väisälä frequency in the «warm» years decreases against the «cold» year of 2004. The depth of the layer with maximum values of the Brunt-Väisälä frequency increases during the periods of ice melting. At the same time the negative thermohaline stability is more intensive in spring in shallow areas of the sea, extending into a deeper surface layer. During winter period of «warm» years the area of the section with a positive criterion of thermohaline stability decreases both for the deep-water and the shallow-water parts of the section. The depth of the layer with negative values of the density ratio reaches the highest values during summer periods of the «warm» years.
About the Authors
A. V. DanshinaRussian Federation
Department of Oceanology, Scientific Researcher, PhD in Physics and Mathematics
V. V. Ivanov
Russian Federation
Faculty of Geography, Department of Oceanology, Leading Scientific Researcher, D.Sc. in Physics and Mathematics
V. Yu. Chantsev
Russian Federation
Department of Applied Oceanography and Integrated Coastal Zone Management, Associate Professor, PhD in Geography
References
1. Alekseev G.V., Aleksandrov E.I., Glok N.I., Ivanov N.E., Smolyanitsky V.M., Kharlanenkova N.E., Yulin A.V. Evoljucija ploshhadi morskogo ledovogo pokrova Arktiki v uslovijah sovremennyh izmenenij klimata [Arctic sea ice cover in connection with climate change], Issledovanie Zemli iz kosmosa, 2015, no. 2, p. 5–19. (In Russian)
2. Alekseev G.V., Danilov A.I., Kattsov V.M., Kuzmina S.I., Ivanov N.E. Changes in the climate and sea ice of the Northern Hemisphere in the 20th and 21st centuries from data of observations and modeling, Izv. Atmospheric and Oceanic Physics, 2009, vol. 45, no. 6, p. 675–686.
3. Callaghan T. V., Johansson M., Key J., Prowse T.D., Ananicheva M., Klepikov A. Feedbacks and interactions: From the Arctic cryosphere to the climate system, Ambio, 2011, vol. 40, p. 75–86.
4. Danshina A.V. Vlijanie teplozapasa dejatel’nogo sloja Vostochno-Sibirskogo morja na jevoljuciju ledjanogo pokrova [Heat Content Effect of the Active Layer on the Ice Cover Evolution in the East Siberian Sea], Original’nye issledovanija, 2018, vol. 8, no. 5, p. 4–15. (In Russian)
5. Davis P.E., Lique C., Johonson H.L., Guthrie J.D. Competing Effects of Elevated Vertical Mixing and Increased Freshwater Input on the Stratification and Sea Ice Cover in a Changing Arctic Ocean, American Meteorological Society, 2016, vol. 46, p. 1531–1553.
6. Fedorov K.N. Izbrannye trudy po fizicheskoj okeanologii [Selected Works on Physical Oceanology], Leningrad, Gidrometeoizdat Publ., 1991. 308 p. (In Russian)
7. Fofonoff N.P., Millard R.C. Algorithms for computation of fundamental properties of seawater, UNESCO Technical papers in marine science, 1983, vol. 44, p. 53.
8. Garmanov A.L., Koltyshev A.E., Nikiforov E.G., Timokhov L.A., Morison Dz. Verhnij peremeshannyj sloj v Arkticheskom bassejne [Upper mixed layer in the Arctic basin], Trudy AANII [Proc. of the AANII], 2008, vol. 448, p. 149–189. (In Russian)
9. Kattsov V., Ryabinin V., Overland J., Serreze M., Visbeck M., Walsh J., Meier W., Zhang X. 2010: Arctic sea ice change: a grand challenge of climate science, Journal of Glaciology, 2010, vol. 56, no. 200, p. 1115–1121.
10. Okeanograficheskie tablicy [Oceanographical tables], Leningrad, Gidrometeoizdat Publ., 1975. 477 p. (In Russian)
11. Okeanografija i morskoj ljod [Oceanography and sea ice], Frolov I.E. (Ed.), Moscow, Paulsen Publ., 2011, 432 p. (In Russian)
12. Overland J.E., Wang M., Salo S. The recent Arctic warm period, Tellus Publ., 2008, p. 1–9.
13. Poloukhin N.V., Talipova T.G., Pelinovsky E.N., Lavrenov I.V. Kinematic characteristics of the high-frequency internal wave field in the Arctic ocean, Oceanology, 2003, vol. 43, no. 3, p. 333–343.
14. Polyakov I.V., Pnyushkov A.V. Carmack E.C. Stability of the arctic halocline: a new indicator of arctic climate change, Environmental Research Letters, 2018, vol. 13, p. 1–8.
15. Rudels В., Larsson A.-M., Sehlstedt P.-I. Stratification and water mass formation in the Arctic Ocean: some implications for the nutrient distribution, Polar Research, 1991, vol. 10, p. 19–32.
16. Shutova M.M. Obshhaja okeanologija. Gidrofizika okeana [General Oceanology. Hydrophysics of the Ocean], Vladivostok, Far Eastern Federal University Publ., 2012, 151 p. (In Russian)
17. Sistema moray Laptevyh i prilegayushchih morej Arktiki: sovremennoe sostoyanie i istoriya razvitiya [System of the Laptev Sea and the Adjacent Arctic Seas: Modern and Past Environments], Kassens X., Lisicyn A.P., Tide J., Polyakova E.I., Timokhov L.A., Frolov I.E. (Ed.), Moscow, Moscow St. Univ. Publ., 2009. 608 p. (In Russian)
18. Timokhov L.A., Chernyavskaya E.A. Osobennosti sostojanija poverhnostnogo sloja Arkticheskogo bassejna v anomal’noe leto 2007 [Features of the Arctic Basin surface layer at anomalous summer of 2007], ProblemyArktiki i Antarktiki, 2009, no. 3(83), p. 19–28. (In Russian)
19. Vertikal’naja struktura i dinamika podlednogo sloja okeana [Vertical structure and dynamics of ocean under ice], Timokhov L.A. (Ed.), Leningrad, Gidrometeoizdat Publ., 1989, 141 p. (In Russian)
20. Volkov V.A., Lukin V.V. Vodnye massy i stratifikacija vod Arkticheskogo bassejna [Water masses and stratification of the Arctic basin]. Trudy AANII [Proc. of the AANII], 1985, vol. 398, p. 30–39. (In Russian)
21. AARI WDC Sea Ice file server. URL: http://wdc.aari.ru/datasets/ssmi/data/north/extent/lap/ (access date 20.03.2019).
22. NEMO. Community Ocean Model. URL: https://www.nemoocean.eu/ (access date 20.03.2019).
23. Obzor gidrometeorologicheskih processov v Severnoj poljarnoj oblasti. Ezhekvartal’nyj informacionnyj bjulleten’ [Review of hydrometeorological processes in the North Polar Region. Quarterly information bulletin], Transarktika. AARI. URL: http://www.aari.ru/main.php?lg=0&id=449 (access date 20.02.2019).
24. Obzornye ledovye karty. Operativnye dannye [Survey ice maps. Operational data]/ Transarktika. AARI. URL: http://www.aari.ru/main.php?lg=0&id=94 (access date 20.02.2019).
Review
For citations:
Danshina A.V., Ivanov V.V., Chantsev V.Yu. Changes in vertical stability of the Laptev Sea upper layer under the ice cover shrinkage. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2020;(6):110-120. (In Russ.)