On the causes of the long-term variability of surface air temperature over the White Sea
Abstract
Changes of the surface air temperature (SAT) over the White Sea are investigated. The inter-annual changes of mean SAT anomalies in the White Sea region for 1980-2010, calculated from various reanalyses, appeared to be in good agreement with each other. Furthermore, two reanalyses turned out to be the closest to the rest of data sources, i.e. high-resolution MERRA-2 for the period of satellite observations and NCEP/NCAR having lower resolution, but a longer period. Therefore, MERRA-2 was applied for the detailed analysis of SAT changes in various regions of the White Sea, and data from the NCEP/NCAR reanalysis - for the study of longer-term SAT changes in the entire White Sea region. In addition, the results were compared with the data on the surface water layer and surface air temperatures from the coastal and island hydrometeorological stations of the White Sea. Changes in the SAT anomalies were calculated for particular regions of the White Sea. Their analysis showed insignificant differences of the changes in SAT anomalies between the individual regions and the White Sea region as a whole. Therefore, the mean SAT anomalies were studied throughout the White Sea during further analysis of inter-annual fluctuations.
The analysis of monthly average SAT over the White Sea showed its significant growth over the past decades. Against the background of this growth, we revealed inter-annual SAT variability with periods close to the periods of El Nino - the Southern Oscillation (2-7 years) and the North Atlantic Oscillation (7-10 years). The influence of these fluctuations on the inter-annual variability of the White Sea SAT is shown and the periods of their synchronization and desynchronization are found. From the mid-1960s to the early 1970s and from the second half of the 1980s to the mid-2010s, during the El Nino events, negative SAT anomalies were usually observed over the White Sea, changing to the positive anomalies during the La Nina events. Between the late 1960s and mid-1990s the North Atlantic Oscillation had a positive effect on the anomalies in the surface air temperature of the White Sea, in the second half of the 1990s this influence changed sign, but since the beginning of the 2000s became positive again. We suggest a hypothesis on the role of Global Atmospheric Oscillation as a synchronizing link between the tropics of the Pacific Ocean, the North Atlantic and the White Sea region.
Keywords
About the Authors
I. V. SerykhRussian Federation
Laboratory of Large-Scale Variability of Hydrophysical Fields, Senior Scientific Researcher, Ph.D. in Physics and Mathematics
A. V. Tolstikov
Russian Federation
Laboratory of Geography and Hydrology, Head of the Laboratory, PhD. in Geography
References
1. Arthun M., Eldevik T., Viste E., Drange H., Furevik T., Johnson H.L., Keenlyside N.S. Skillful prediction of northern climate provided by the ocean, Nature Communications, 2017, vol. 8, 1585, DOI: 10.1038/ncomms15875.
2. Astafyeva N.M., Rayev M.D. The effect of large-scale remote atmospheric environments on tropical cyclone trajectories, Sovremenniye problemi distancionnogo zondirovaniya Zemli iz kosmosa. Fizicheskiye osnovy. Metody i tehnologii monitoringa okruzhayushhey sredy, potencialno opasnyh yavleniy i objektov [Current problems of remote sensing of the Earth from space: Physical foundations, methods and technologies for monitoring the environment, potentially dangerous phenomena and objects], Moscow, DoMira Publ., 2010, vol. 7, no. 1, p. 61–74. (In Russian)
3. Beloye more i ego vodosbor pod vliyaniyem klimaticheskih i antropogennyh faktorov [White Sea and its catchment basin under the influence of climatic and anthropogenic factors] Filatov N.N., Terzhevik A.Yu. (Eds.), Petrozavodsk, Karelian Science Center RAS Publ., 2007, 335 p. (In Russian)
4. Byshev V.I. Sinopticheskaya i krupnomasshtabnaya izmenchivost‘ okeana i atmosfery [Synoptic and large-scale variability of the ocean and the atmosphere]. Moscow, Nauka Publ., 2003, 344 p. (In Russian)
5. Byshev V.I., Neiman V.G., Anisimov M.V., Gusev A.V., Serykh I.V., Sidorova A.N., Figurkin A.L., Anisimov I.M. Multidecadal oscillations of the ocean active upper-layer heat content. Pure and Applied Geophysics, 2017, vol. 174, no. 7, p. 2863–2878. DOI: 10.1007/s00024-017-1557-3.
6. Byshev V.I., Neiman V.G., Romanov Y.A., Serykh I.V., Sonechkin D.M. Statistical significance and climatic role of the Global Atmospheric Oscillation. Oceanology, 2016, vol. 56, no. 2, p. 165–171. DOI: 10.1134/S000143701602003X.
7. Byshev V.I., Neiman V.G., Romanov Yu.A., Serykh I.V. El Nińo as a consequence of the global oscillation in the dynamics of the Earth’s climatic system, Doklady Earth Sciences, 2012, vol. 446, no 1, p. 1089-1094. DOI: 10.1134/S1028334X12090012.
8. Compo G.P., Whitaker J.S., Sardeshmukh P.D., Matsui N., Allan R.J., Yin X., Gleaso B.E., Vose R.S., Rutledge G., Bessemoulin P., Bronnimann S., Brunet M., Crouthamel R.I., Grant A.N., Groisman P.Y., Jones P.D., Kruk M., Kruger A.C., Marshall G.J., Maugeri M., Mok H.Y., Nordli 0., Ross T.F., Trigo R.M., WangX.L., Woodruff S.D., Worley S.J. The Twentieth Century Reanalysis Project. Quarterly J. Roy. Meteorol. Soc., 2011, vol. 137, p. 1-28. DOI: 10.1002/qj.776.
9. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P, Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., BechtoldP, BeljaarsA.C.M., Van de BergL., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Holm E.V., Isaksen L., Kallberg P, Kohler M., Matricardi M., McNally A.P., Monge Sanz B.M., Morcrette J. J., ParkB. K., Peubey C., de Rosnay P., Tavolato C., Thepaut J. N., Vitart F. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 2011, vol. 137, iss. 656, p. 553597. DOI: 10.1002/qj.828.
10. Dikson R., Majnke J. Oceanographic conditions of the Atlantic in 1998-1999 and their gradual recovery from extreme impacts. 100 let okeanograficheskih nablyudenij na razreze «Kol ‘skiy meridian» v Barencevom more [100 years of oceanographic observations at the Kola Meridian section in the Barents Sea]. Proc. of the International Symposium, Murmansk, PINRO Publ., 2005, p. 130144. (In Russian)
11. Gelaro R., McCarty W., Suarez M.J, TodlingR., Molod A., TakacsL., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy. L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A.M., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 2017. DOI: 10.1175/JCLI-D-16-0758.1.
12. Henriksson S.V Interannual oscillations and sudden shifts in observed and modeled climate. Atmos. Sci. Lett., 2018, p. 1-8. DOI: 10.1002/asl.850.
13. Huang B., Thorne P.W., Banzon V.F., Boyer T., Chepurin G., Lawrimore J.H., Menne M.J., Smith T.M., Vose R.S., Zhang H.-M. Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate, 2017, vol. 30, p. 8179-8205. DOI: 10.1175/JCLI-D-16-0836.1.
14. Hurrell J.W., Kushnir Y., Ottersen G., Visbeck M. The North Atlantic Oscillation: Climate Significance and Environmental Impact. Eds. Geophysical Monograph Series, 2003, vol. 134, 279 pp.
15. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of WG1 to the V Assessment Report of the IPCC, Cambridge, UK and New York, NY, USA, 2013, 1535 p.
16. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Candin L., IredellM., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds R., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Jenne R., Joseph D. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 1996, vol. 77, p. 437-471. DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
17. Kanamitsu M., Ebisuzaki W., Woollen J., Yang S-K, Hnilo J.J., Fiorino M., Potter G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 2002, p. 1631-1643. DOI: 10.1175/BAMS-83-11-1631.
18. Klimat Karelii: izmenchivost ‘ i vliyanie na vodny ‘e ob ‘ekty ‘ i vodosbory ‘ [Climate of Karelia: its variability and impact on water bodies and catchment basins], Filatov N.N. (Ed.), Petrozavodsk, KarNC RAN Publ., 2004, 224 p. (In Russian)
19. Kobayashi S., Ota Y., Harada Y., Ebita A., Moriya M., Onoda H., Onogi K., Kamahori H., Kobayashi C., Endo H., Miyaoka K., Takahashi K. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. Journal of the Meteorological Society of Japan, Ser. II, 2015, vol. 93, no. 1, p. 548. DOI: 10.2151/jmsj.2015-001.
20. Krasilnikova V.V Analiz mnogoletnej izmenchivosti prizemnoj temperatury‘ vozduha v rajone Dvinskogo zaliva Belogo moray za period 1915-2015 gg. [Analysis of inter-annual variability of surface air temperature in the Dvina Bay of the White Sea for the period 1915-2015], Gidrometeorologicheskie issledovaniya i prognozyf 2018, no. 2(368), p. 110-119. (In Russian)
21. Lociya Belogo moray [White Sea Sailing Direction]. Saint-Petersburg, Min. oborony‘ SSSR, GUNiO Publ., 1995, no. 1110, 336 p. (In Russian)
22. Moron V., Vautard R., Ghil M. Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Climate Dynamics, 1998, vol. 14, p. 545-569. DOI: 10.1007/s003820050241.
23. Rodriguez-Fonseca B., Suarez-Moreno R., Ayarzaguena B. Lypez-Parages J., Gymara I., Villamayor J., Mohino E., Losada T., Castaco-Tierno A. A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal. Atmosphere, 2016, vol. 7, no. 7, p. 87. DOI: 10.3390/atmos7070087.
24. Saha S., Moorthi S., Wu X., Wang J., Nadiga S., Tripp P., Behringer D., Hou Y-T, Chuang H., IredellM., EkM., Meng J., YangR., MendezM.P., Wang W., Chen M., Becker E. The NCEP Climate Forecast System Version 2. Journal of Climate, 2014, vol. 27, p. 2185-2208. DOI: 10.1175/JCLI-D-12-00823.1.
25. Serykh I.V O dinamike i strukture global’noj atmosfernoj oscillyacii v klimaticheskih modelyah i real’nosti [On the dynamics and structure of the Global Atmospheric Oscillation in climate models and reality], Okeanologicheskie issledovaniya, 2018, vol. 46, no. 1, p. 14-28. DOI: 10.29006/1564-2291.JOR-2018.46(1).2. (In Russian)
26. Serykh I. V., Sonechkin D.M. El Nino forecasting based on the global atmospheric oscillation. International Journal of Climatology, 2020. DOI: 10.1002/joc.6488.
27. Serykh I. V., Sonechkin D.M. Haos i poryadok v atmosfernoj dinamike. Part 1. Haoticheskie variacii pogody [Chaos and order in atmospheric dynamics. Part 1. Chaotic weather variations], Izvestiya Vysshih Uchebnyh Zavedeniy. Prikladnaya Nelineynaya Dinamika, 2017, vol. 25, no. 4, p. 4-22. DOI: 10.18500/0869-6632-2017-25-4-4-22. (In Russian)
28. Serykh I.V., Sonechkin D.M. Nonchaotic and globally synchronized short-term climatic variations and their origin. Theoretical and Applied Climatology, 2019, vol. 137(3-4), p. 26392656. DOI: 10.1007/s00704-018-02761-0.
29. Serykh I. V., Sonechkin D.M. Sopostavlenie vremennyh energeticheskih spektrov indeksov El’-Nin’o - Yuzhnogo kolebaniya i global’nyh polej temperatury i atmosfernogo davleniya v pripoverhnostnom sloe [An intercomparison of the temporal power spectra of El Nino - Southern oscillation indices and the global temperature and pressure fields in the surface layer], Fundamental and Applied Climatology, 2017, vol. 2, p. 144-155. DOI: 10.21513/2410-8758-2017-1-144-155. (In Russian)
30. Serykh I.V., Sonechkin D.M., Byshev V.I., Neiman V.G., Romanov Yu.A. Global Atmospheric Oscillation: An Integrity of ENSO and Extratropical Teleconnections. Pure and Applied Geophysics, 2019, vol. 176(8), p. 3737-3755. DOI: 10.1007/s00024-019-02182-8.
31. Sistema Belogo morya. Prirodnaya sreda vodosbora Belogo morya. [The system of the White Sea. The natural environment of the White Sea catchment basin], vol. 1, Moscow, Nauchny mir Publ., 2010, 480 p. (In Russian)
32. Stickler A., Bronnimann S., Valente M.A., Bethke J., Sterin A., Jourdain S., Roucaute E., Vasquez M.V, Reyes D.A., Allan R., Dee D. ERA-CLIM: Historical Surface and Upper-Air Data for Future Reanalyses. Bull. Amer. Meteor. Soc., 2014, vol. 95, no. 9, p. 14191430. DOI: 10.1175/BAMS-D-13-00147.1.
33. Tolstikov A.V. Izmenchivost‘ temperatury poverhnostnogo sloya Belogo moray [Temperature variability of the surface layer of the White Sea], Moscow, GEOS Publ., 2016, 212 p. (In Russian)
34. Tolstikov A.V., Chernov I.A. Variability of biogeochemical processes in the White Sea under different climatic conditions according to modeling data. Trudy Karel skogo nauchnogo centra RAN [Proc. of the Karelian Scientific Center], Petrozavodsk. KarNC RAN Publ., 2019, no. 6, p. 1-11. DOI: 10.17076/eb95. (In Russian)
35. Tolstikov A.V, Filatov N.N., Zdorovennov R.E. Beloe more i ego vodosbor [White Sea and its catchment basin], Database Registration Certificate, no. 2010620435, August 16, 2010. (In Russian)
36. Torrence D.C., Compo G.P. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 1998, vol. 79, p. 61-78. DOI: 10.1175/1520-0477(1998)079<0061APGTWA>2.0.C0;2.
37. TorrenceD.C., WebsterPJ. Interdecadal changes in the ENSO-monsoon system. Journal of Climate, 1999, vol. 12, p. 2679-2690. DOI: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2.
38. Vakulenko N. V., Serykh I. V., Sonechkin D.M. Haos i poryadok v atmosfernoj dinamike, part 3. Predskazuemost’ El’-Nin’o [Chaos and order in atmosheric dynamics, part 3. Predictability of El Nino], Izvestiya Vysshih Uchebnyh Zavedeniy. Prikladnaya Nelineynaya Dinamika, 2018, vol. 26, no. 4, p. 75-94. DOI: 10.18500/0869-6632-2018-26-4-75-94. (In Russian)
Review
For citations:
Serykh I.V., Tolstikov A.V. On the causes of the long-term variability of surface air temperature over the White Sea. Lomonosov Geography Journal. 2020;(4):83-95. (In Russ.)