Probabilistic approach to forecasting the formation of ephemeral gully network within arable interfluves
Abstract
The article deals with forecasting of the ephemeral gully network on cultivated slopes of interfluves within the Central Russian Plain. Digital elevation models of two key areas in the basins of the Medveditsa River (Saratov region) and Veduga River (Voronezh region) were created using the 1988 topographic maps at the scale of 1:10 000 and the thalwegs of linear depressions existing at the time were identified. Basing on this information, a number of morphometric characteristics were calculated for key sites and a morphometric classification of the relief was elaborated. The probability of development of ephemeral gullies in a linear depressions network is calculated for particular classes using the Bayes theorem. Probability values of less than 10% are background, values of 10–20% correspond to the sites of potential erosion development, and probability values of more than 30% correlate with initial thalwegs of linear depressions. The applicability of propablistic method is limited by geomorphological structure of the studied territory – the higher the density of horizontal dissection, the lower the predictive ability. According to the location of thalwegs in 1988 and in the late 2010s no significant increase in linear erosion over the past 30 years took place.
Keywords
About the Authors
D. A. BezukhovRussian Federation
Faculty of Geography, Makkaveev Laboratory of Soil Erosion and Fluvial Processes, postgraduate student
A. L. Entin
Russian Federation
Faculty of Geography, Department of Cartography and Geoinformatics, postgraduate student
References
1. Atlas Saratovskoy oblasti [Saratov region atlas]. M.: GUGK, 1994. 31 p. (In Russian)
2. Atlas Voronezhskoy oblasti [Voronezh region atlas]. Voronezh, 1978. 48 p. (In Russian)
3. Carrara A., Cardinali M., Guzzetti F., Reichenbach P. GIS technology in mapping landslide hazard // Geographical information systems in assessing natural hazards. Springer, Dordrecht, 1995. P. 135–175.
4. Conoscenti C., Agnesi V., Angileri S. et al. A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily, Italy // Environmental Earth Sciences. 2013. V. 70. № 3. P. 1179–1195.
5. Conrad O., Bechtel B., Bock M. et al. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 // Geoscientific Model Development. 2015. V. 8. № 7. P. 1991–2007.
6. Eremenko E.A., Panin A.V. Proiskhozhdeniye lozhbinnoy seti v tsentral’nykh i yuzhnykh rayonakh Vostochno-Yevropeyskoy ravniny [Genesis of linear depressions network in the central and southern regions of the East European Plain] // Vestn. Mosk. un-ta. Ser. 5. Geogr. 2011. № 3. P. 59–66. (In Russian)
7. Florinskiy I.V. Teoriya i prilozheniya matematikokartograficheskogo modelirovaniya rel’yefa [Theory and applications of mathematical and cartographic terrain modeling], Dis. … d.t.n. Pushchino, IMPB RAN, 2010. 267 p. (In Russian)
8. Golosov V.N., Kozlovskaya M.E., Patsukevich Z.V. Spetsifika erozionnykh protsessov v yugo-vostochnom Zabaykal’ye [Specific features of erosion processes in the southeastern Transbaikalia] // Vestn. Mosk. un-ta. Ser. 5. Geogr. 1996. V. 5. № 4. P. 46–50. (In Russian)
9. Hengl T. Finding the right pixel size // Computers and Geosciences. 2006. V. 32. № 9. P. 1283–1298.
10. Hutchinson M., Xu T., Stein J. Recent Progress in the ANUDEM Elevation Gridding Procedure // Geomorphometry. 2011. V. 2011. P. 19–22.
11. Kovalev S.N. Ovrazhno-balochnyye sistemy v gorodakh [Gully-balka systems in cities]. M.: Kompaniya PrintKoV, 2011. 138 p. (In Russian)
12. Litvin L.F., Golosov V.N., Dobrovol’skaya N.G., Ivanova N.N., Kiryuhina Z.P., Krasnov S.F. Statsionarnyye issledovaniya erozii pochv pri snegotayanii v tsentral’nom Nechernozem’ye [Stationary studies of soil erosion during snow melting in the central Non-Chernozem region] // Eroziya pochv i ruslovyye protsessy. M.: Izd-vo MGU, 1998. V. 11. P. 57–76. (In Russian)
13. Panin A.V., Eremenko E.A., Kovda I.V. Tsikl erozionnogo raschleneniya i vypolneniya erozionnoy seti na severo-vostoke Stavropol’ya v kontse pleystotsena. Chast’ II. Sovremennyye balki. Erozionnaya istoriya regiona [Late Pleistocene cycle of erosion dissection and infilling of the drainage network in the north-eastern Stavropol territory (Part 2. Recent balkas. History of the drainage network)] // Geomorfologiya. 2011. № 2. P. 102–113. (In Russian)
14. Poesen J.W.A., Hooke J.M. Erosion, flooding and channel management in Mediterranean environments of southern Europe // Progress in Physical Geography. 1997. V. 21. № 2. P. 157–199.
15. Rysin I.I. Ovrazhnaya eroziya v Udmurtii [Gully erosion in Udmurtia]. Izhevsk: Izd-vo Udmurtsk. un-ta, 1998. 274 p. (In Russian)
16. Wishmeier W.H., Smith D.D. Predicting rainfall erosion losses from cropland east of the rocky mountains // ARS-USDA in Cooperation with Purdue University, Purdue Agric. Exp. Sta. Handbook. 1965. V. 282. 15 p.
Review
For citations:
Bezukhov D.A., Entin A.L. Probabilistic approach to forecasting the formation of ephemeral gully network within arable interfluves. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2019;(5):39-49. (In Russ.)