Approximation of hydrogen sulfide vertical distribution in the Black Sea
Abstract
Basing on 2010–2016 measurements in the Black Sea possible approximations of the vertical distribution of hydrogen sulfide concentrations by an analytic function are analyzed for further use in the calculation of the components of marine carbonate system, in particular for the estimation of the hydrosulfide component of total alkalinity. Approximation of the hydrogen sulfide profile was carried out with the account of its dependence on various density anomaly representations – sigma-t density (σt), sigma-theta or potential density (σθ) and sigma density (σs,t,p). An exponential function is used to approximate the hydrogen sulfide profile as a function of density σt and density σθ. A logistic function is used when the hydrogen sulfide profile was represented as a function of density σs,t,p. In the deep-sea layer, an ambiguous correspondence between the concentration of hydrogen sulfide and the value of sigma-t density was revealed because of the inversion in st vertical profile in the near-bottom quasi-homogeneous layer. This ambiguity results in higher approximation errors and errors in the calculation of hydrosulfide component of total alkalinity. Approximations of the vertical distribution of hydrogen sulfide concentration as a function of density σs,t,p using the logistic curve and as a function of density σθ using the exponential curve have the smallest errors, and to the fullest extent possible satisfy the required accuracy for the calculation of hydrosulfide component of total alkalinity.
About the Authors
I. G. ShokurovaRussian Federation
Oceanography Department, Scientific Researcher, PhD. in Geography
E. V. Medvedev
Russian Federation
Sea Biogeochemistry Department, Junior Scientific Researcher
S. I. Kondratev
Russian Federation
Sea Biogeochemistry Department, Senior Scientific Researcher, PhD. in Chemistry
References
1. Belyaev V.I., Sovga E.E. Mathematical model for the ecosystem of the Black Sea hydrogen sulphide zone // Soviet Journal of Physical Oceanography. 1992. V. 3. № 6. Р. 455–470.
2. Bezborod ov A.A., Eremeev V.N. Chernoe more. Zona vzaimodejstvija ajerobnyh i anajerobnyh vod [The Black Sea. Zone of interaction of aerobic and anaerobic waters]. Sevastopol: MGI ANU, 1993. 299 p. (In Russian)
3. Eremeev V.N., Ivanov L.I., Konovalov S.K., Samodurov A.S. Rol’ potokov kisloroda, sul’fidov, nitratov i ammonija v formirovanii gidrohimicheskoj struktury osnovnogo piknoklina i anajerobnoj zony Chernogo morya [The role of oxygen, sulfide, nitrate and ammonium fluxes in the formation of hydrochemical structure of the main pycnocline and anaerobic zone of the Black Sea] // Morskoj Gidrofizicheskij Zhurnal. 2001. № 1. P. 64–82. (In Russian)
4. Eremeev V.N., Konovalov S.K. K voprosu o formirovanii bjudzheta i zakonomernostjah raspredelenija kisloroda i serovodoroda v vodah Chernogo morya [To the formation of the budget and the distribution regularities of oxygen and hydrogen sulfide in the Black Sea water] // Morskoj E‘kologicheskij Zhurnal. 2006. № 3. P. 5–30. (In Russian)
5. Gill A. Dinamika atmosfery i okeana [Atmosphere-Ocean Dynamics]. Moscow: Mir, 1986. V. 1. 396 p.; V. 2. 415 p. (In Russian)
6. Goyet C., Bradshaw A.L., Brewer P.G. The carbonate system in the Black Sea // Deep-Sea Res. Part A. Oceanographic Research Papers. 1991. V. 38. № 2. P. S1049–S1068. doi:10.1016/S0198-0149(10)80023-8
7. Hiscock W., Millero F. Alkalinity of the anoxic waters in the western Black Sea // Deep-Sea Research. 2006. V. 53. № 2. P. 1787–1801.
8. Ivanov L.I., Samodurov A.S. The role of lateral fluxes in ventilation of the Black Sea // Journal of Marine Systems. 2001. V. 31. № 1–3. P. 159–174.
9. Ivanov V.A., Belokopytov V.N. Okeanografiya Chernogo morya [Oceanography of the Black Sea] // Sevastopol: MGI NAN Ukrainy, 2011. 212 p.
10. Kond ratev S.I., Medvedev E.V., Konovalov S.K. Total Alkalinity and pH in the Black Sea Waters in 2010–2011 // Physical Oceanography. 2017. № 4. P. 35–45.
11. Makkaveev P.N. Dissolved inorganic carbon and total alkalinity in anoxic waters of the Black Sea // Oceanology. 1995. V. 35. № 4. P. 494–499.
12. Martin J.H. Knauer G.A., Karl D.M., Broenkow W.W. VERTEX: carbon cycling in the northeast Pacific // Deep Sea Research. Part A. Oceanographic Research Papers. 1987. V. 34. № 2. P. 267–285.
13. Matsuda N., Mikami S., Shimoura S. et al. Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant, Japan // Journal of Environmental Radioactivity. 2015. V. 139. P. 427–434.
14. Medvedev E.V., Moiseenko O.G., Ingerov A.V. Struktura i ocenka kachestva jekspedicionnyh dannyh pH i obshhej shhelochnosti vod Chernogo i Azovskogo morej, poluchennyh v period s 1920-h po 1990-e gg [The structure and quality assessment of pH and total alkalinity data for the Black and Azov seas waters, obtained during 1920s–1990s expeditions] // Materialy VII mezhdunarodnoj konferencii «Sovremennye rybohozjajstvennye i jekologicheskie problem Azovo-Chernomorskogo regiona». Kerch: JugNIRO, 2012. V. 1. P. 167–170. (In Russian)
15. Metody gidrochimicheskich issledovanij okeana [Methods of hydrochemical ocean studies]. O.K. Bordovskiy, V.N. Ivanenkov (eds.). Moscow: Nauka, 1978. 272 p. (In Russian)
16. Millero F.J. The Marine Inorganic Carbon Cycle // Chem. Rev. 2007. V. 107. № 2. P. 308–341.
17. Murray J.M., Codispoti L.A., Freiderich G.E. Oxidation–reduction environments: the suboxic zone in the Black Sea // Huang C.P., O’Melia C.R., Morgan J.J. (eds.). Aquatic Chemistry, ACS Advances in Chemistry Series. 1995. V. 244. P. 157–176.
18. Murray J. W. Black Sea oceanography: Results from the 1988 Black Sea expedition // Deep Sea Research Part A. Oceanographic Research Papers. 1991. V. 38. P. S655–S662.
19. Murray J. W., Top Z., Özsoy E. Hydrographic properties and ventilation of the Black Sea // Deep Sea Research Part A. Oceanographic Research Papers. 1991. V. 38. P. S663–S689.
20. Samodurov A.S., Ivanov L.I. Balansovaja model’ dlja rascheta srednih vertikal’nyh potokov zhidkosti, tepla, soli i rastvorennyh himicheskih veshhestv v termohalokline Chernogo morja [A balance model for calculating average vertical fluxes of liquid, heat, salt and dissolved chemicals in the thermohalocline of the Black Sea] // Morskoj Gidrofizicheskij Zhurnal. 2002. № 1. P. 7–24. (In Russian)
21. Skopincev B.A. Formirovanie sovremennogo himicheskogo sostava vod Chernogo morja [Formation of the actual chemical composition of the Black Sea waters]. Leningrad: Gidrometeoizdat, 1975. 336 p. (In Russian)
22. Sorokin Ju.I. Chernoe more: Priroda, resursy [The Black Sea: nature, resources]. Moscow: Nauka, 1982. 217 p. (In Russian)
23. Tugrul S., Basturk Ö., Saydam C., Yэlmaz A. Changes in the hydrochemistry of the Black Sea inferred from water density profiles // Nature. 1992. V. 359. P. 137–139.
24. UNESCO I. Tenth report of the joint panel on oceanographic tables and standards // UNESCO Tech. Pap. Mar. Sci. 1981. V. 36. P. 15–19.
25. Vinogradov M.E., Nalbandov Ju.R. Vlijanie izmenenij plotnosti vody na raspredelenie fizicheskih, himicheskih i biologicheskih harakteristik jekosistemy pelagiali Chernogo morya [Influence of water density changes on the distribution of physical, chemical and biological characteristics of the pelagic ecosystem of the Black Sea] / / Oceanologiya. 1990. V. 30 № 5. P. 769–777. (In Russian)
26. Volkov I.I., Neretin L.N. Hydrogen sulfide in the Black Sea // The Black Sea Environment. Berlin; Heidelberg: Springer, 2007. P. 309–331.
27. Zeebe R.E., Wolf-Gladrow D. CO2 in seawater: equilibrium, kinetics, isotopes. Amsterdam: Elsevier Science, 2001. V. 65. 360 p.
Review
For citations:
Shokurova I.G., Medvedev E.V., Kondratev S.I. Approximation of hydrogen sulfide vertical distribution in the Black Sea. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2019;(5):30-38. (In Russ.)