FREQUENCY OF STORMS IN THE BARENTS SEA UNDER MODERN CLIMATE CONDITIONS
Abstract
Estimates of the frequency of storm waves in the Barents Sea are given. The results were obtained on the basis of data from the simulation of wind waves during 1979 to 2010 using the WAVEWATCH III wave model on the nonstructural grid. Number of episodes with various heights of waves (from 4 to 10 m) is calculated for every month in the Barents Sea. The assessment of inter-annual variability of the frequency of storm waves is carried out.
There is no significant linear trend for the frequency of storm waves in the Barents Sea for 1979–2010 period. Episodes with wave height more than 6 m were more frequent in 1979–1991, less frequent in 1991– 2002 and more frequent again after 2003. Maximum number of such waves is during 1990 to 1993. Interannual variability of storm waves is very high (for different years the number of storm waves episodes can vary by 2 to 3 times). The coefficient of correlation between the index of the Arctic fluctuation and the frequency of waves more than 7 m high is 0,6. The coefficient of correlation of the number of deep cyclones with the frequency of waves more than 7 m high makes 0,67.
About the Authors
S. A. MyslenkovRussian Federation
Faculty of Geography, Department of Oceanology, Senior Research Scientist; Hydrometeorological Research Center of the Russian Federation, PhD. in Physics and Mathematics.
M. Yu. Markina
Russian Federation
trainee researcher; Faculty of Geography, Department of Oceanology, post-graduate student.
V. S. Arkhipkin
Russian Federation
Faculty of Geography, Department of Oceanology, Associate Professor, PhD. in Geography.
N. D. Tilinina
Russian Federation
Research Scientist, PhD. in Physics and Mathematics.
References
1. Akima H. A new method of interpolation and smooth curve fitting based on local procedures // J. Assoc. Comput. 1970. V. 17. P. 589—600.
2. Dee D.P et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system // Quart. J. Roy. Meteor. Soc. 2011. V 137. P. 553—597.
3. Dymov VI., Pasechnik T.A., Lavrenov I.V i dr. Sopostavlenie rezul’tatov raschetov po sovremennym modeljam vetrovogo volnenija s dannymi naturnyh izmerenij [Comparison of modern wind-wave model results with field measurements] // Meteorologija i gidrologija. 2004. № 7. S. 87—94. (In Russian)
4. Huth R., Beck C., Philipp A. et al. Classifications of Atmospheric Circulation Patterns Recent Advances and Applications. Trends and Directions in Climate Research // Ann. N.Y. Acad. Sci. 2008. V. 1146. Р 105—152. doi: 10.1196/ annals.1446.019
5. IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Eds T.F. Stocker, D. Qin, G.-K. Plattner et al. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, 2013.
6. Kononova N.K. Izmenenija cirkuljacii atmosfery severnogo polusharija v XX—XXI stoletijah i ih posledstvija dlja klimata [Changes of atmospheric circulation of the Northern Hemisphere in the 20th—21st centuries and their climatice consequences] // Fundamental’naja i prikladnaja klimatologija. 2015. № 1. S. 133— 162. (In Russian)
7. Liu Q., Babanin A., Zieger S., Young I., Guan C. Wind and wave climate in the Arctic Ocean as observed by altimeters // J. Climate. 2016. V. 29(22). Р 7957—7975.
8. Lutsenko E.I., Lagun V.E. Polyarnye mezomasshtabnye tsyklony v atmosfere nad Barentsevym i Karskim moryami [Polar mesoscale cyclones in the atmosphere over the Barents and Kara seas] // Problemy Arktiki i Antarktiki. 2013. № 2(96). P. 76—89.(In Russian)
9. Markina M.Ju., Gavrikov A.V. Izmenchivost’ vetrovogo volnenija v severnoj Atlantike za zimy v period s 1979 po 2010 gg. po dannym chislennogo modelirovanija [Wave climate variability in the North Atlantic during winter periods of 1979 to 2010 by the data of numerical modeling] // Okeanologija. 2016. T. 56. № 3. S. 346— 352. (In Russian)
10. Mastrjukov S.I. Imitacionnoe modelirovanie vremennyh rjadov shtormov i okon pogody po vetrovym uslovijam [Simulation of time series of storms and weather windows basing on wind conditions data] // Meteorologija i gidrologija. 2013. № 4. S. 58—67. (In Russian)
11. Myslenkov S., Medvedeva A., Arkhipkin V., Markina M., Surkova G., Krylov A., Dobrolyubov S., Zilitinkevich S., Koltermann P. Long-term statistics of storms in the Baltic,
12. Barents and White Seas and their future climate projections // Geography, Environment, Sustainability. 2018. V. 11. № 1. P. 93112.
13. Myslenkov S.A. Golubkin P.A., Zabolotskih E.V Ocenka kachestva modelirovanija volnenija v Barencevom more pri prohozhdenii zimnego ciklona [Evaluation of the quality of wave modeling under winter cyclone conditions for the Barents Sea] // Vestnik Moskovskogo universiteta. Serija 5: Geografija. 2016. № 6. S. 26-32 (In Russian)
14. Myslenkov S.A., Arkhipkin V.S., Koltermann P.K. Ocenka vysoty voln zybi v Barencevom i Belom morjah [Estimation of the heights of swell in the White and Barents seas] // Vestnik Mosk. uni. Ser. 5. Geografija. 2015. № 5. S. 59-66. (In Russian)
15. MyslenkovS.A., Platonov VS., ToropovPA., Shestakova A.A. Modelirovanie shtormovogo volnenija v Barencevom more [Simulation of storm waves in the Barents Sea] // Vestnik Mosk. uni. Ser. 5. Geografija. 2015. № 6. S. 65-75. (In Russian)
16. ReistadM., Breivik O., Haakenstad H. et al. A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea and the Barents Sea // J. Geophys. Res. 2011. V 116. C05019.
17. Rezhim, diagnoz i prognoz vetrovogo volnenija v okeanah i morjah: Nauch.-metod. posobie [Climate, analysis and forecast of wind waves in the oceans and seas] / Pod red. E.S. Nesterova. M. : Issled. gruppa «Social’nye nauki», 2013. 295 s. (In Russian)
18. Rusu L., Ponce de Leon S., Guedes Soares C. Numerical modelling of the North Atlantic storms affecting the West Iberian coast // Maritime Technology and Engineering - Guedes Soares & Santos. Taylor & Francis Group, London, 2015. ISBN 978-1-138-02727-5
19. Saha S. et al. The NCEP climate forecast system reanalysis // Bulletin of the American Meteorological Society. 2010. V 91. № 8. P. 1015-1057.
20. Shalina E.V. Sokrashhenie ledjanogo pokrova Arktiki po dannym sputnikovogo passivnogo mikrovolnovogo zondirovanija [Arctic sea ice retreat by the data of satellite passive microwave observations] // Sovremennye problemy izuchenija Zemli iz kosmosa. 2013. T. 10. № 1. S. 328-336. (In Russian)
21. Smirnova J., Golubkin P Comparing polar lows in atmospheric reanalyses: Arctic System Reanalysis versus ERA-Interim // Mon. Weath. Rev. 2017. V. 145. № 6. P. 2375-2383.
22. Spravochnye dannye po rezhimu vetra i volnenija Barenceva, Ohotskogo i Kaspijskogo morej [Reference data of wind and waves regime in the Barents, Okhotsk and Caspian seas]. SPb.: Rossijskij morskoj registr sudohodstva, 2003. 213 s. (In Russian)
23. Stopa J., Ardhuin F, Girard-Ardhuin F. Wave climate in the Arctic 1992-2014: seasonality and trends // Cryosphere. 2016. V 10(4). Р. 1605-1629.
24. Surkova G.V., Krylov A.A. Sinopticheskie situacii, sposobstvujushhie formirovaniju jekstremal’nyh znachenij skorosti vetra v Barencevom more [Synoptic situations favoring the extreme wind velocities in the Barents Sea] // Vestnik Moskovskogo universiteta. Serija 5: Geografija. 2016. № 6. S. 18-25. (In Russian) Tilinina N., Gulev S.K., Bromwich D. New view of Arctic cyclone activity from the Arctic System reanalysis // Geophys. Res. Lett. 2014. № 43. P. 1766-1772.
25. Tilinina N., Gulev S.K., Rudeva I., Koltermann P. Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses // J. Clim. 2013. V. 26. Р. 6419-6438.
26. Tolman H.L. User manual and system documentation of WAVEWATCH-III Version 4.18. NOAA/NWS/NCEP/MMAB // Technical note. 2014. 282 p.
27. Vtoroj ocenochnyj doklad Rosgidrometa ob izmenenijah klimata i ih posledstvijah na territorii Rossijskoj Federacii [Second assessment report of Rosgidromet about the climate change and its consequences for the territory of the Russian Federation]. Moscow: Rosgidromet, 2014. P. 1008. (In Russian)
28. Wang X.L., Swail V.R. Changes of Extreme Wave Heights in Northern Hemisphere Oceans and Related Atmospheric Circulation Regimes // J. Climate. 2001. V 14. Р. 2204-2221. doi:10.1175/1520-0442(2001)014<2204: coewhi>2.0.co;2
29. Zolina O., Gulev S.K. Improving the accuracy of mapping cyclone numbers and frequencies // Mon. Wea. Rev. 2002. V. 130. Р. 748-759.
Review
For citations:
Myslenkov S.A., Markina M.Yu., Arkhipkin V.S., Tilinina N.D. FREQUENCY OF STORMS IN THE BARENTS SEA UNDER MODERN CLIMATE CONDITIONS. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2019;(2):45-54. (In Russ.)