Preview

Lomonosov Geography Journal

Advanced search

WAVE CLIMATE OF THE BALTIC SEA FOLLOWING THE RESULTS OF THE SWAN SPECTRAL MODEL APPLICATION

Abstract

Application of the SWAN wind wave model (with input data Reanalysis NCEP/NCAR) for theBaltic Seais discussed. High spatial resolution for the whole area of the sea and a longest period (over 60 years) of calculated wind wave parameters are characteristic of the study. The results of simulation are a good basis for further investigation of the climatic variability of wind waves. The results were compared with the data from the anchored buoys, available operative models of theBaltic Seaand the results of other researchers. High correlation of simulated and observed values was revealed, however the SWAN model on the average undervalue maximum wave height and peak periods. Statistical characteristics, such as correlation, mean regular error and standard deviation) were calculated to validate the model; their values are similar to those of other numerical experiments. The extremely severe storm caused by the Gudrun hurricane of 2005 is discussed more in detail. It was shown that the SWAN model adequately represents the real conditions, thus it is applicable for the shallowBaltic Sea. The storm situations were identified for the 63-year period, allowing the analysis of the climate variability of wind waves in theBaltic Sea. The overall trend of increasing storm intensity was revealed, as well as the 20-year periodicity with maxima in the 1970-s and 1990-s. 

About the Authors

A. Yu. Medvedeva
Lomonosov Moscow State University; P. P. Shirshov Institute of Oceanology RAS, Moscow
Russian Federation


V. S. Arkhipkin
Lomonosov Moscow State University
Russian Federation


S. A. Myslenkov
Lomonosov Moscow State University
Russian Federation


S. S. Zilitinkevich
Finnish Meteorological Institute
Finland


References

1. Лопатухин Л.И., Бухановский А.В., Иванов С.В., Чернышева Е.С. Справочные данные по режиму ветра и волнения Балтийского, Северного, Черного, Азовского и Средиземного морей // Российский морской регистр судоходства. СПб., 2006. 450 c. Lopatoukhin L.I., Boukhanovsky A.V., Ivanov S.V., Tchernysheva E.S. Spravochnye dannye po rezhimu vetra i volnenija Baltijskogo, Severnogo, Chernogo, Azovskogo i Sredizemnogo morej [Reference data about wind and wave regimes of the Baltic, North, Black, Azov and Mediterranean Seas], Saint-Petersburg, Russian maritime register of shipping, 2006, 450 p.

2. Руководящий документ 52.27.759–2011, Наставление по службе прогнозов. Раздел 3. Ч. III. Служба морских гидрологических прогнозов. М.: Триада ЛТД, 2011. 194 с. Rukovodjashhij dokument 52.27.759–2011. Nastavlenie po sluzhbe prognozov. Razdel 3. Ch. III. Sluzhba morskih gidrologicheskikh prognozov [Management directive 52.27.759– 2011, Forecast service manual, pt 3, chpt III. Maritime hydrological forecast service), Moscow: Triada LTD, 2011, 194 p.

3. Arkhipkin V.S., Gippius F.N., Koltermann K.P., Surkova G.V. Wind waves in the Black Sea: results of a hindcast study. Nat. Hazards and Earth System Scie. Discuss., 2014, V. 14, pp. 2883–2897.

4. Blomgren S., Larson M., Hanson H. Numerical Modeling of the Wave Climate in the Southern Baltic Sea, J. Coastal Res., 2001. V. 17, no 2, pp. 342–352.

5. Bouws E., Draper L., Laing A.K. et al. Guide to Wave Analysis and Forecasting. WMO–No 702, World Meteorological Organization. Geneva, 1998, 159 p.

6. Broman B., Hammarklint T., Rannat K. et al. Trends and extremes of wave fields in the north-eastern part of the Baltic Proper, Oceanologia, 2006, V. 48 (S), pp. 165–184.

7. Earth system research laboratory. URL: http://www. esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml (Accessed: 14.05.2014).

8. Environment climate data Sweden. URL: http://www. smhi.se/ecds (Accessed: 23.03.2014).

9. General bathymetric chart of the oceans (GEBCO). URL: http://www.gebco.net (Accessed: 13.01.2014).

10. Gill G.C. Comments on “The variation of Gust Factors with Mean wind Speed and with Height”, J. Appl. Meteorology, 1969, V. 8, no 1, pp. 167–167.

11. Häggmark L., Ivarsson K.I., Olofsson P.O. MESAN– Mesoscale analysis, SMHI Rapp., Meteorol. och Klimatol. (Sweden), 1997, ser.: RMK 75.

12. Häggmark L., Ivarsson K.-I., Gollvik S., Olofsson P.O. Mesan, an operational mesoscale analysis system, Tellus A, 2000, V. 52, no 1, pp. 2–20.

13. Jӧnsson A., Broman B., Rahm L. Variations in the Baltic Sea wave fields, Ocean Engineering, 2003, V. 30, no 1, pp. 107–126.

14. Kahma K., Pettersson H., Tuomi L. Scatter diagram wave statistics from the northern Baltic Sea, MERI–Report Series of the Finnish Institute of Marine Res., 2003, V. 49, pp. 15–32.

15. Källén E. Hirlam documentation manual system 2.5, The Swedish Meteorological and Hydrological Institute (Available from SMHI, S-60176 Norrkoping, Sweden), 1996. 243 p.

16. Kalnay E., Kanamitsu M., Kistler R. et al. The NCEP/ NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 1996, V. 77, no 3, pp. 437–471.

17. Kriezi E.E., Broman B. Past and future wave climate in the Baltic Sea produced by the SWAN model with forcing from the regional climate model RCA of the Rossby Centre, US/EU-Baltic International Symposium, 2008 IEEE/OES, 2008, pp. 1–7.

18. Leppäranta M., Myrberg K. Physical oceanography of the Baltic Sea, Berlin: Springer, 2009, 378 p.

19. Natural Risk Assesment Laboratory. URL: http://www. nral.org/ru (Accessed: 20.06.2014).

20. Parallel.ru. URL: http://parallel.ru (Accessed: 27.05.2014).

21. Pontes M.T., Barstow S., Bertotti L. et al. Use of numerical wind-wave models for assessment of the offshore wave energy resource, J. Offshore Mechanics and Arctic Engineering, 1997, V. 119, no 3, pp. 184–190.

22. Räämet A. Spatio-temporal variability of the Baltic Sea wave fields, Thesis on Civil Engineering, Tallin: TUT Press, 2010.

23. Räämet A., Soomere T. The wave climate and its seasonal variability in the northeastern Baltic Sea, Eston. J. Earth Sci., 2010, V. 59, no 1, pp. 100–113.

24. Saremi S. Development of a wave database in coastal areas around Sweden using the SWAN wave model: evaluation of the influence of grid resolutions and bathymetric data, Gothenburg: Chalmers University of Technology, 2010.

25. Soomere T. Anisotropy of wind and wave regimes in the Baltic Proper, J. Sea Res., 2003, V. 49, no 4, pp. 305–316.

26. Soomere T. Extremes and decadal variations of the northern Baltic Sea wave conditions, Extreme Ocean Waves, Amsterdam: Springer Netherlands, 2008, pp. 139–157.

27. Soomere T. Wind wave statistics in Tallinn Bay, Boreal Env. Res., 2005, V. 10, no 2, pp. 103–118.

28. Soomere T., Behrens A., Tuomi L., Nielsen J.W. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun, Natural Hazards & Earth System Sci., 2008, V. 8, no 1, pp. 37–46.

29. Soomere T., Räämet A. Decadal changes in the Baltic Sea wave heights, J. Mar. Syst., 2014, V. 129, pp. 86–95.

30. Sterl A., Caires S. Climatology, variability and extrema of ocean waves: The Web-based KNMI/ERA-40 wave atlas, Int. J. Climatol., 2005, V. 25, no 7, pp. 963–977.

31. SWAN SourceForge. URL: http://swanmodel.sourceforge. net (Accessed: 04.01.2014).

32. WAMDI Group: Hasselmann S., Hasselmann K., Bauer E. et al. The WAM Model — a Third Generation Ocean Wave Prediction Model, J. Phys. Oceanogr., 1988, no 18, pp. 1775–1810.

33. Zaitseva-Pärnaste I., Suursaar Ü., Kullas T. et al. Seasonal and long-term variations of wave conditions in the northern Baltic Sea, J. Coast. Res., 2009, V. SI 56, pp. 277–281.


Review

For citations:


Medvedeva A.Yu., Arkhipkin V.S., Myslenkov S.A., Zilitinkevich S.S. WAVE CLIMATE OF THE BALTIC SEA FOLLOWING THE RESULTS OF THE SWAN SPECTRAL MODEL APPLICATION. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2015;(1):12-22. (In Russ.)

Views: 838


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)