TRENDS OF CLIMATE CHANGE IN THE BLACK SEA-CASPIAN SEA REGION DURING RECENT 30 YEARS
Abstract
Based on ERA-Interim reanalysis data and observations, the main trends in the temperature-humidity regime of the Black Sea-Caspian-Sea region (BCR) for the period of 1982–2014 were revealed. The statistically significant summer warming is associated with increasing surface sea temperature (SST) and radiation balance. Despite the growth of the total moisture content in the atmosphere and the potential convective energy no statistically significant changes in precipitation mode were revealed. The growth of total moisture content is compensated by increasing divergence of moisture due to the intensification of large-scale downward movements in the troposphere. As a result the seasonal and annual precipitation amounts show just minor changes. Perhaps this effect is a consequence of increasing frequency of summer anticyclones over the BCR. This process triggers the increase of the radiation balance due to lesser cloudiness, which leads to the increase in SST and surface air temperature.
About the Authors
P. A. ToropovRussian Federation
Faculty of Geography, Department of Meteorology and Climatology, Associate Professor; Laboratory of Climatology, Leading Research Scientist
M. A. Aleshina
Russian Federation
Department of Monitoring and Probabilistic Climate Outlook, engineer; Laboratory of Climatology, engineer
V. A. Semenov
Russian Federation
Laboratory of Climate Theory, Leading Research Scientist; Laboratory of Climatology, Head of the laboratory
References
1. Adler R.F., George J.H., Chang A., et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present) // J. hydrometeorology. 2003. V. 4. № 6. P. 1147–1167.
2. Artamonov Yu.V., Skripaleva Ye.A., Fedirko A.V. Regional’nye osobennosti klimaticheskoj izmenchivosti polya temperatury na poverkhnosti Chernogo morya [Regional features of climatic variability of the temperature field on the Black Sea surface] // Meteorologiya i gidrologiya. 2017. № 2. S. 56–66 (in Russian).
3. Dee D.P., Uppala S.M., Simmons AJ., et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system // Q. J. R. Meteorol. Soc. 2011. № 137. P. 553–597.
4. Efimov V.V., Volodin Е.М., Anisimov А.Е., Barabanov V.S. Regionalnyie proektsii izmenenij klimata v Chernomorsko-Kaspijskom regione v kontse XXI stoletiya [Regional trajectories of climate change in the Black Sea – Caspian Sea region in the end of the 21st century] // Morskoj gidrofizicheskij zhurnal. 2015. № 5 (184). S. 14–28 (in Russian).
5. Intergovernmental Panel on Climate Change. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects. Cambridge University Press, 2014.
6. Jones P., Harris I. CRU TS3. 21: Climatic Research Unit (CRU) Time-Series (TS) version 3.21 of high resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2012). NCAS British Atmospheric Data Centre. 2013.
7. Kislov A.V., Surkova G.V., Arhipkin V.S. Povtoryaemost’ shtormovyh situatsij v Baltijskom, Chernom i Kaspijskom moryah v izmenyayuschihsya klimaticheskih usloviyah [Frequency of storm situations in the Baltic, Black and Caspian seas under changing climatic conditions] // Meteorologiya i gidrologiya. 2016. № 2. S. 67–77 (in Russian).
8. Lenderink G., Van Meijgaard E. Increase in hourly precipitation extremes beyond expectations from temperature changes // Nature Geoscience. 2008. V. 1. № 8. P. 511–514.
9. Lu J., Vecchi G.A., Reichler T. Expansion of the Hadley cell under global warming // Geophysical Research Letters. 2007. V. 34. № 6. P. 115–132.
10. Matveeva T.A., Guschina D.Yu., Zolina O.G. Krupnomasshtabnye indikatory ekstremalnyh osadkov v pribrezhnyh prirodno-ekonomicheskih zonah evropejskoj territorii Rossii [Large-scale indicators of extreme precipitation in coastal natural-economic zones of the European part of Russia] // Meteorologiya i gidrologiya. 2015. № 11. S. 20–32 (in Russian).
11. Meredith E.P. et al. Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme // Nature Geoscience. 2015. V. 8. № 8. P. 615.
12. Min S.K., Zhang X., Zwiers F.W., et al. Human contribution to more-intense precipitation extremes // Nature. 2011. V. 470. № 7334. P. 378–381.
13. Myslenkov S.A., Arhipkin V.S. Analiz vetrovogo volneniya v Tsemesskoj buhte Chernogo morya s ispolzovaniem modeli SWAN [Analysis of wind waves in the Tsemesskaya Bay of the Black Sea using the SWAN model] // Trudy Gidrometeorologicheskogo nauchno-issledovatelskogo tsentra Rossiyskoy Federatsii. 2013. № 350. S. 58–67 (in Russian).
14. Myslenkov S.A., Krechik V.A., Solov’yov D.M. Analiz temperatury vody v pribrezhnoj zone Baltijskogo morya po sputnikovym dannym i izmereniyam termokosy [Analysis of water temperature in the coastal zone of the Baltic Sea using satellite data and thermistor chain measurements] // Tr. Gidrometeorologicheskogo nauchno-issledovatel’skogo tsentra Rossiyskoy Federatsii. 2017. № 364. S. 159–169 (in Russian).
15. Philipona R. Greenhouse warming and solar brightening in and around the Alps // International J. Climatology. 2013. V. 33. № 6. P. 1530–1537.
16. Reynolds R.W., Smith T.M., Liu C., et al. Daily high-resolutionblended analyses for sea surface temperature // J. Climate. 2007. V. 20. № 22. P. 5473–5496.
17. Semenov V., Bengtsson L. Secular trends in daily precipitation characteristics: greenhouse gas simulation with a coupled AOGCM // Climate Dynamics. 2002. V. 19. № 2. P. 123–140.
18. Toropov P.A. Otsenka kachestva vosproizvedeniya modelyami obschey tsirkulyatsii atmosfery klimata Vostochno-Evropejskoy ravniny [Assessment of the quality of the East-European Plain climate simulation by models of the general atmospheric circulation] // Meteorologiya i gidrologiya. 2005. № 5. S. 5–21 (in Russian).
19. Toropov P.A., Mihalenko V.N., Kutuzov S.S., Morozova P.A., Shestakova A.A. Temperaturnyj i radiatsionnyj rezhim lednikov na sklonah Elbrusa v period ablyatsii za poslednie 65 let [Thermal and radiation regime of Elbrus glaciers during the period of ablation for recent 65 years] // Lyod i sneg. 2016. T. 56. № 1. S. 5–19 (in Russian).
20. Toropov P.A., Shestakova A.A. Testirovaniya mezomasshtabnoj modeli (WRF) dlya zadachi prognoza Novorossijskoy bory [Evaluation of the WRF mezzo-scale model for forecasting of the Novorossijsk bora] //Vestnik Mosk. un-ta. Ser. 5. Geografiya. 2014. № 3. S. 23–29 (in Russian).
21.
22.
23.
Review
For citations:
Toropov P.A., Aleshina M.A., Semenov V.A. TRENDS OF CLIMATE CHANGE IN THE BLACK SEA-CASPIAN SEA REGION DURING RECENT 30 YEARS. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2018;(2):67-77. (In Russ.)