THE RESULTS OF NUMERICAL SIMULATIONS OF STORM SURGES IN THE WHITE SEA
Abstract
The results of numerical simulations of storm surges in the White Sea using the ADCIRC hydrodynamic model adapted to the conditions of the water body are discussed. Numerical experiments were performed on an unstructured high-resolution grid. The model was verified through the comparative analysis of numerical results and observational data at the Severodvinsk, Solovki and Sosnovets stations. The spatial structure of surges and their propagation features are described. Numerical experiments have shown that the ADCIRC model adequately reproduces residual sea level (RSL) oscillations during surges. This is confirmed by significant correlation between RSL oscillation values obtained by processing of the observational data and from numerical simulations. The RMSE of
model calculations is also relatively small (9–21 cm). The numerical simulations revealed that when cyclones pass, a strong RSL increase occurs in the Voronka and Mezen Bay as a result of pressure and wind forces action in the Barents Sea. Then this disturbance penetrates through the Gorlo into the main part of the sea, causing a less significant increase of RSL in the entire water area. At the same time the highest values of RSL rise occur in the heads of the Dvina
and Onega Bays.
About the Authors
A. T. KondrinRussian Federation
Faculty of Geography, Department of Oceanology, Senior Research Scientist, PhD. in Geography
A. D. Korablina
Russian Federation
Faculty of Geography, Department of Oceanology, post-graduate student
V. S. Arhipkin
Russian Federation
Faculty of Geography, Department of Oceanology, Associate Professor, PhD. in Geography
References
1. Emery W.J, Thompson R.E. Data Analysis Methods in Physical Oceanography. Amsterdam: Elsevier, 2001. 638 p.
2. Filatov N., Pozdnyakov D., Johannessen Ola M. et al. White sea. Its marine environment and ecosystem dynamics influenced by global change. Springer – Verlag, Berlin: Praxis Publishing, Chichester, UK, 2005. 462 p.
3. Fomin V.V., Polozok A.A. Tehnologiya modelirovaniya shtormovyh nagonov i vetrovogo volneniya v Azovskom more na nestrukturirovannyh setkah [Technology for modeling storm surges and wind waves in the Sea of Azov on unstructured grids.] // Ekologicheskaya bezopasnost’ pribrezhnoj i shel’fovoj zon i kompleksnoe ispol’zovanie resursov shel’fa. Sevastopol’, 2013. Vyp. 27. S. 139–145 (in Russian).
4. Gidrometeorologiya i gidrohimiya morej SSSR [Hydrometeorology and hydrochemistry of seas of the USSR]. Leningrad, 1991. T. II. Vyp. 1. 240 p. (in Russian).
5. Ivanova A.A., Arhipkin V.S., Myslenkov S.A., Shevchenko G.V. Modelirovanie shtormovyh nagonov v pribrezhnoj zone o. Sahalin [Storm surges modeling in the coastal zone of the Sakhalin island] // Vestnik Mosk. un-ta. Ser. 5. Geografiya. 2015. № 3. S. 41–49 (in Russian).
6. Kondrin A.T. Formirovanie shtormovyh nagonov v Belom more [Storm surge formation in the White Sea] // Vestnik. Mosk. un-ta. Ser. 5. Geografiya. 2016. № 6. S. 33–40 (in Russian).
7. Kondrin A.T. Shtormovye nagony v rajone Belomorskoj biologicheskoj stancii MGU [Storm surges in the vicinity of the MSU White Sea Biological Station] // Vestnik Mosk. un-ta. Ser. 5. Geografiya. 2015. № 6. S. 96–107 (in Russian).
8. Korablina A.D., Arhipkin V.S., Samborskij T.V. Osobennosti formirovaniya shtormovyh nagonov v dinamicheskoj sisteme Beloe more – ust’evaya oblast’ r. Severnaya Dvina [Specific features of storm surge formation in the dynamic system of the White Sea – the mouth area of the Northern Dvina River] // Vestnik Mosk. unta. Ser. 5. Geografiya. 2016. № 1. S. 78–86 (in Russian).
9. Luettich R.A., Westerink J.J. Formulation and Numerical Implementation of the 2D/3D ADCIRC; 2004. http://adcirc.org/ adcirc_theory_2004_12_08.pdf
10. Luettich R.A., Westerink J.J., Scheffner N.W. ADCIRC: an advanced three-dimensional circulation model for shelves coasts and estuaries. Report 1: Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL, Dredging Research Program Technical Report DRP-92-6, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS, 1992. 137 p.
11. Lyard F., Lefиvre F., Letellier T., Francis O. Modelling the global ocean tides: a modern insight from FES2004 // Ocean Dynamics. 2006. V. 56. P. 394–415.
12. Magrickij D.V., Skripnik E.N. Opasnye gidrologicheskie processy v ust’e Severnoj Dviny i faktory ih mnogoletnej izmenchivosti [Hydrological natural hazards in the mouth of the Northern Dvina River and the factors of their long-term variability] // Vestnik Mosk. un-ta. Ser. 5. Geografiya. 2016. № 6. S. 59–70 (in Russian).
13. Pawlowicz R., Beardsley B., Lentz S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE // Computers and Geoscience. 2002. V. 28. P. 929–937.
14. Resio D.T., Westerink J.J. Modeling the physics of storm surges // Physics Today. 2008. P. 33–38.
15. SMS Surface-water Modeling System User Manual. 2013. V. 11.1.
16. Vtoroj ocenochnyj doklad Rosgidrometa ob izmeneniyah klimata i ih posledstviyah na territorii Rossijskoj Federacii [Second Roshydromet assessment report on climate change and its consequences in the Russian Federation]. M., 2014. 1017 p. (in Russian).
Review
For citations:
Kondrin A.T., Korablina A.D., Arhipkin V.S. THE RESULTS OF NUMERICAL SIMULATIONS OF STORM SURGES IN THE WHITE SEA. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2018;(2):43-52. (In Russ.)