Preview

Lomonosov Geography Journal

Advanced search

CATCHMENT AREA DERIVATION FROM GRIDDED DIGITAL ELEVATION MODELS USING THE FLOWLINE-TRACING APPROACH

Abstract

Hydrological terrain analysis on the basis of the digital elevation models is an important part of GIS-based geomorphometry. Hydrological parameters, such as the catchment area or flow accumulation, are frequently used in geographical studies, both directly and indirectly. Their computation is based on the determining of water flow through the regular grid of digital elevation model (DEM). There are many algorithms developed for this procedure, and their application gives extremely different computation results for the catchment area. All these algorithms apply a discrete, «cell-to-cell» flow
conception. This, first, does not adequately represent real water movement, and, second, makes it difficult to verify results, because cells of a regular grid do not usually «suit» to the landforms.
The paper presents a new approach for catchment area and flow accumulation computation. It is based on flowline tracing on a continuous surface. The surface could be obtained through interpolation of discrete elevation values from a regular grid of DEM.

About the Authors

S. M. Koshel
Lomonosov Moscow State University
Russian Federation

Faculty of Geography, Department of Cartography and Geoinformatics, Leading Scientific Researcher, PhD. in Geography



A. L. Entin
Lomonosov Moscow State University
Russian Federation
Faculty of Geography, Department of Cartography and Geoinformatics, postgraduate student


References

1. Costa-Cabral M.C., Burges S.J. Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas // Water resources research. 1994. Vol. 30(6). P. 1681–1692.

2. Fairfield J., Leymarie P. Drainage networks from grid digital elevation model // Water Resources Research. 1991. Vol. 27(5), P. 709–717.

3. Forsythe G.E., Malcolm M.A., Moler C.B. Matematicheskiye metody mashinnykh vychisleniy (per. s angl.) [Computer Methods for Mathematical Computations (translated from English)]. Moscow: Mir, 1980. 280 p. (in Russian).

4. Freeman Т. Calculating catchment area with divergent flow based on a regular grid // Computers and Geosciences. 1991. Vol. 17. P. 413–422.

5. Greenlee D.D. Raster and vector processing for scanned linework // Photogrammetric Engineering and Remote Sensing. 1987. Vol. 53. P. 1383–1387.

6. Jasiewicz J., Metz M. A new GRASS GIS toolkit for Hortonian analysis of drainage networks // Computers and Geosciences. 2011. Vol. 37(8). P. 1162–1173.

7. Kahaner D., Moler C., Nash S. Chislennye metody i matematicheskoe obespecheniye (per. s angl.) [Numerical Methods and Software (translated from English)]. Moscow: Mir. 1998. 575 p. (in Russian).

8. Koshel S.M. Teoreticheskoye obosnovaniye struktury i funktsij bloka modelirovaniya reljefa v GIS [Theoretical basis of structure and functions of relief modeling block in GIS applications]. PhD Thesis. Moscow, 2004. 105 p. (in Russian).

9. Koshel S.M., Entin A.L. Sovremennye metody raschyota raspredeleniya poverhnostnogo stoka po tsifrovym modelyam reljefa [Contemporary methods of DEM-based surface flow distribution modelling]. Geomorfologiya: sovremennye metody i tehnologii tsifrovogo modelirovaniya reljefa v naukah o Zemle. Issue 6. Moscow: Media-PRESS, 2016. P. 24–34 (in Russian).

10. Lea N.L. An aspect-driven kinematic routing algorithm // Overland Flow: Hydraulics and Erosion Mechanics / Eds. A.J. Parsons, A.D. Abrahams. New York, 1992.

11. O’Callaghan J.F., Mark D.M. The extraction of drainage networks from digital elevation data // Computer vision, graphics and image processing. 1984. Vol. 28(3). P. 323–344.

12. Olaya V. Hidrologнa Computacional y Modelos Digitales de Terreno: Teorнa, prбctica y filosofнa de una nueva forma de anбlisis hidrolуgico [Electronic resource] // URL: http://www.gabrielortiz. com/descargas/Hidrologia_Computacional_ MDT_SIG.pdf. (Accessed 24.09.2015).

13. Qin C., Zhu A.-X., Pei T., Li B., Zhou C., Yang L. An adaptive approach to selecting a flow partition exponent for a multiple flowdirection algorithm // International J. Geographical Information Science. 2007. Vol. 21(4). P. 443–458.

14. Quinn P., Beven K., Chevallier P., Planchon O. The prediction of hillslope flow paths for distributed hydrological modelling // Seibert J., McGlynn B.L. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models // Water Resources Research. 2007. Vol. 43(4).

15. Sibson R. A brief description of natural neighbour interpolation // Interpreting multivariate data. 1981. Vol. 21. P. 21–36.

16. Tarboton D.G. A new method for the determination of flow directions and upslope areas in grid digital elevation models // Water Resources Research. 1997. Vol. 33(2). P. 309–319.

17. Wang L., Liu H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling // International Journal of Geographical Information Science. 2006. Vol. 20(2). P. 193–213.


Review

For citations:


Koshel S.M., Entin A.L. CATCHMENT AREA DERIVATION FROM GRIDDED DIGITAL ELEVATION MODELS USING THE FLOWLINE-TRACING APPROACH. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2017;(3):42-50. (In Russ.)

Views: 934


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)