ANALYSIS OF TOPOGRAPHY STRUCTURE FOR THE EVALUATION OF SEDIMENT DELIVERY RATIO WITHIN THE PLAVA RIVER BASIN (TULA OBLAST)
Abstract
Erosion is the main agent of sediment redistribution within river basin. Its spatial pattern mostly depends on basin topography and structure of fluvial network. The contribution of relief to sediment
redistribution within a river basin could be assessed through the detailed analysis of basin topography, classification of its elements and detailed field studies of key catchments corresponding to the identified classes. The most suitable quantitative parameter scribing a river basin as a system of sediment redistribution is sediment delivery ratio (SDR). The SDR values were calculated for particular catchments within the Plava River network and for its basin as a whole. Considering the fact that the Plava River basin belongs to the Chernobyl-affected zone, the results can be useful for the ssessment of radioecological danger and potential risks of river flow contamination.
About the Authors
M. M. IvanovRussian Federation
Faculty of Geography, Makkaveev Laboratory of Soil Erosion and Fluvial Processes, Junior
Scientific Researcher
V. N. Golosov
Russian Federation
Faculty of Geography, Makkaveev Laboratory of Soil Erosion and Fluvial Processes, Leading Scientific Researcher, D.Sc. in Geography
V. R. Belyaev
Russian Federation
Faculty of Geography, Makkaveev Laboratory of Soil Erosion and Fluvial Processes, Senior Scientific Researcher, Ph.D. in Geography
References
1. Atlas radioaktivnogo zagryaznenija evropejskoj chasti Rossii, Belorussii i Ukrainy [Atlas of Radioactive Contamination of the European Part of Russia, Bielorussia and Ukraine] / Pod red. Ju.A. Izraelya. M.: IGKJe Rosgidrometa i RAN, Roskartografija, 1998 (in Russian).
2. Belyaev V., Shamshurina E., Markelov M., Golosov V., Ivanova N., Bondarev V., Paramonova T., Evrard O., Ottle C., Lefevre I., Bonte P. Quantification of the sediment budget of a river basin, based on reconstruction of the post-fallout redistribution of Chernobyl particle-bound 137Cs // Erosion and Sediment Yields in the Changing Environment (Proceedings of a symposium held atthe Institute of Mountain Hazards and Environment, CAS-Chengdu, China, 11–15 October 2012) (IAHS Publ. 356, 2012). P. 394–402
3. Belyaev V.R., Golosov V.N., Kislenko K.S., Kuznetsova J.S.,Markelov M.V. Combining direct observations, modelling, and 137Cs tracer for evaluating individual event contribution to long-term sediment budgets // Sediment dynamics in changing environments (Proceedings of a symposium held in Christchurch, New Zealand, December 2008). IAHS Publ. 325, 2008. P. 114–122.
4. Belyeav V.R., Golosov V.N., Markelov M.V., Ivanova N.N., Shamshurina E. N., Evrard O. Effects of land use and climate changes on small reservoir siltation in the agricultural belt of European Russia // Considering Hydrological Change in Reservoir Planning and Management. V. 362 of IAHS Publ. IAHS Press Wallingford, 2013. P. 134–145.
5. Bezukhov D.V., Belyaev V.R., Ivanova N.N. Kolichestvennaya ocenka intensivnosti i napravlennosti erozionno-akkumulyativnyh processov na obrabatyvaemykh sklonakh v predelakh bassejna r. Plava (Tul’skaja oblast’) [Quantitative evaluation of intensity and direction of erosion-accumulation processes on cultivated slopes within the Plava River basin (Tula Oblast)] // Vestnik MGU. Ser. 5. Geografija. 2014. № 6. S. 16–23 (in Russian).
6. Bobrovickaja N.N. Empiricheskij metod raschyota smyva pochvy so sklonov [Empirical meth od of slope erosion calculation] // Stok nanosov, ego izuchenie i geograficheskoe raspredelenie. L., 1977. P. 202–211 (in Russian).
7. Bondarev V.P., Belyaev V.R., Ivanova N.N., Evrar O. Dostavka nanosov s vodosbornyh sklonov v dolinu reki [Sediment delivery from water catchment’s slopes to river valley] // Geomorfologiya. 2014. № 1. S. 36–45 (in Russian).
8. Dedkov A.P., Mozzherin V.I. Erozija i stok nanosov na Zemle [Erosion and sediment yield on the Earth]. Kazan’: Izd-vo Kazansk. Un-ta, 1984. 264 p. (in Russian).
9. Filosofov V.P. Kratkoe rukovodstvo po morfometricheskomu metodu poiskov tektonicheskikh struktur [Quick guide for the morthometric method of identifying the tectonic structures]. Saratov, 1960. 93 p. (in Russian).
10. Golosov V.N. Ispol’zovanie radioizotopov pri issledovanii erozionno-akkumulyativnyh processov [Application of radioisotopes for investigation of erosion processes] // Geomorfologija. 2000. № 2. P. 26–33 (in Russian).
11. Golosov V., Ivanova N. Sediment-associated Chernobyl 137Cs redistribution in small basins n central russia // Applied Geomorphology. V. 10 of International association of geomorphologists. John Wiley & Sons Chichester, 2002. P. 165–182.
12. Golosov V.N. Erozionno-akkumulyativnye processy v rechnykh bassejnakh osvoennkyh ravnin. M.: GEOS, 2006. 296 s. (in Russian).
13. Hinderer M. From gullies to mountain belts: A review of sediment budgets at various scales // Sedimentary Geology. 2012. V. 280. P. 21–59.
14. Horton R. Erosional development of streams and their drainage basins; hydrological approach to quantitative morphology // Geological Society of America Bulletin. March 1945. V. 56, no. 3. P. 275–370.
15. Kruzhalin V.I., Kadetov O.K., Simonov Ju.G. Vliyanie struktury rechnoj seti na khod rel’efoobrazuyuschikh processov [Influence of river network‘s structure on geomorphologic processes]// Geomorfologiya. 1981. № 3. P. 37–41 (in Russian).
16. Larionov G.A. Erozija i deflyaciya pochv [Water and wind erosion of soils]. Izdatel’stvo Moskovskogo universiteta, M., 1993. 199 p. (in Russian).
17. Litvin L.F. Geografiya erozii pochv sel’skohozyajstvennykh zemel’ Rossii [The geography of soil erosion in Russia]. М.: NKC «Akademkniga», 2002. 256 p. (in Russian).
18. Makkaveev N.I. Ruslo reki i eroziya v eyo bassejne [River channel and erosion in the river basin]. M.: Izd-vo Mosk. un-ta, 2003 (pereizdanie 1955 goda). P. 6–7 (in Russian).
19. Panin A.V., Walling D.E. , Golosov V.N. The role of soil erosion and fluvial processes in the post-fallout redistribution of Chernobylderived caesium-137: a case study of the Lapki catchment, Central Russia // Geomorphology. 2001. P. 185–204.
20. Quine T.A. Use of a simple model to estimate rates of soil erosion from caesium-137 data // J. Water Resources. 1989. V. 8. P. 54–81.
21. Robinson A.R. Relationship between soil erosion and sediment delivery // IAHS Publ. 1977. V. 122. P. 159–167.
22. Roehl J.W. Sediment source areas, delivery ratios and influencing morphological factors // International Association of Scientific Hydrology. 1962. V. 59. P. 202–213.
23. Romancova N.A., Paramonova T.A., Matveev Ja.V., Semenikhin A.I. Sovremennye osobennosti nakopleniya ceziya-137 v razlichnykh fitocenozakh Plavskogo radioaktivnogo pyatna Tul’skoj oblasti. [Modern features of Cs-137 accumulation in different phytocenoses of the Plavsk Hot Spot in the Tula Oblast] // Aktual’nye problemy ekologii i prirodopol’zovaniya. Materialy Vserossijskoj nauchno-prakticheskoj konferencii 18–20 aprelya 2012 g., Vypusk 14, g. Moskva). P. 206–214 (in Russian).
24. Simonov Ju.G., Simonova T.Ju. Rechnoj bassejn i bassejnovaya organizaciya geograficheskoj obolochki [Rivers basin and the basin organization of the geosphere] // Erozija pochv i ruslovye processy. M., 2004. V. 14. P. 7–33 (in Russian).
25. Skripko V.V. Osobennosti struktury rechnykh bassejnov ravninnoj chasti Altajskogo kraya [Specific features of river basin structure within the plains of the Altai Kraj] // Izv. Altajskogo gos. un-ta. 2012. №. 3–2. P. 75 (In Russian).
26. Vigiak O., Borselli L., Newham L.T.H., McInnes J., Roberts A.M. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio // Geomorphology. 2012. V. 138. P. 74–88.
27. Walling D.E. The sediment delivery problem // J. Hydrology. 1983. V. 65. P. 209–237.
28. Walling D.E., He Q. Improved models for estimating soil erosion rates from cesium-137 measurements // J. Environmental Quality. 1999. V. 28. P. 611–622.
29. Wang Z., Govers G., Steegen A., Clymans W., Van den Putte A., Langhans C., Merckx R., Van Oost K. Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area // Geomorphology. 2010. V. 124. P. 65–74.
30. Wisсhmeier W.H., Smith D.D. Predicting rainfall erosion losses – a guide to conservation planning. USDA, Handbook № 537, 1978. 58 p.
Review
For citations:
Ivanov M.M., Golosov V.N., Belyaev V.R. ANALYSIS OF TOPOGRAPHY STRUCTURE FOR THE EVALUATION OF SEDIMENT DELIVERY RATIO WITHIN THE PLAVA RIVER BASIN (TULA OBLAST). Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2017;(3):14-23. (In Russ.)