CATCHMENT BASED ANALYSIS OF MATTER FLOWS IN THE SELENGA–BAIKAL SYSTEM.
Abstract
A regional basinwide assessment of the formation of the water and suspended matter runoff was carried out for theSelengaRiver–Baikal Lakesystem. It is based on the results of integrated hydrological and geochemical research of more than 100 locations withinRussiaandMongoliaperformed by the authors in 2011–2013 using the unified methodology during various hydrological periods. It is shown that the quantitative parameters of the suspended sediment transport are largely determined by the seasonal hydrology. Contribution of floods in the suspended sediment transport ranges from 52% of annual runoff for the large rivers up to 99% for the small ones. Chemical composition of 400 samples of the water and suspended sediment was analyzed by ICPMS / ICP-AES method. The obtained results demonstrate that Selenga River basin is enriched relative to the average content in the World Rivers by dissolved Sr, Li, U, Br, B, Mo, As, migrating predominantly in the ionic form, as well as by Fe, Al, Zn and Pb, migrating in the form of complexes with organic matter. Suspended sediments of the Selenga River and its tributaries are enriched with As, Cd, Mo, Pb, Zn, Mn, Co, which is due to both the geochemical specialization of the region (As) and the technogenic influence (Cd, Mo, Pb).
Analysis of particulate/dissolved modes of chemical elements in river water showed the prevalence of particulate modes of most heavy metals and metalloids (HMM) in the upper part of the basin and dissolved ones in the middle and lower parts. The share of suspended forms of migration increases dramatically during the floods, especially in the upper reaches of the rivers; in the lower part of the basin the impact of floods on the ratio of forms decreases, which is especially noticeable in theSelengadelta. During the floods geochemical fluxes of dissolved HMM increased towards theSelengadelta with increasing water runoff. Extremely high flows of suspended forms caused by heavy rainfall were determined in the upper part of the basin that rapidly decreased downstream due to sedimentation. In the lower part of the basin, the flows increased again due to the confluence of major tributaries. The largest anthropogenic changes in fluxes are typical for small rivers (Modonkul, Hangalyngol, Tuul, Uda et al.), impacted by the towns and mining facilities. Extremely high pollution by Cd and other metals was revealed for theModonkulRiverthat is significantly affecting the geochemical flows of HMM in theDzhidaRiverup to its confluence with theSelengaRiver.
Keywords
About the Authors
N. S. KasimovRussian Federation
Faculty of Geography Department of Landscape Geochemistry and Soil Geography,
Head of the Department, Faculty President, Academician RAS, D.Sc. in Geography
M. Yu. Lychagin
Russian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography,
Associate Professor, PhD in Geography
S. R. Chalov
Russian Federation
Faculty of Geography, Department of Terrestrial Hydrology,
Senior Research Scientist, PhD in Geography
G. L. Shinkareva
Russian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography,
Junior Research Scientist
M. P. Pashkina
Russian Federation
Faculty of Geography, Department of Terrestrial Hydrology,
Student
A. O. Romanchenko
Russian Federation
Faculty of Geography, Department of Terrestrial Hydrology,
PhD Student
E. V. Promakhova
Russian Federation
Faculty of Geography, Makkaveev Laboratory of Soil Erosion and Channel Processes,
Junior Research Scientist
References
1. Alexeevsky N.I. Formirovanie i dvizhenie rechnyh nanosov [The formation and movement of river sediments], Moscow, Izdatel’stvo Moskovskogo Universtiteta, 1998, 202 p. (in Russian).
2. Alexeevsky N.I., Belozerova E.V., Kasimov N.S., Chalov S.R. Prostranstvennaja izmenchivost’ harakteristik stoka vzveshennyh nanosov v bassejne Selengi v period dozhdevyh pavodkov [Spatial variability of suspended sediment characteristics in the Selenga River Basin during rain floods], Vestnik Moskovskogo Unviersiteta, seria 5, Geografiya, 2013, no 3, pp. 60–65 (in Russian).
3. Aud ry S., Schäfer J., Blanc G. et al. Anthropogenic components of heavy metals (Cd, Zn, Cu, Pb) budgets in the LotGaronne fluvial system (France) // Appl. Geochem. 2004. Vol. 19. P. 769–786.
4. Bashenhaeva N.V., Sinjukovich V.N., Sorokovikova L.M., Hodzher T.V. Organicheskoe veshhestvo v vode reki Selengi [Organic matter in the Selenga River water], Geografija i prirodnye resursy, 2006, no 1, pp. 47–54 (in Russian).
5. Berezhnyh T.V., Marchenko O.Ju., Abasov N.V., Mordvinov V.I. Izmenenie letnej cirkuljacii atmosfery nad Vostochnoj Aziej I formirovanie dlitel’nyh malovodnyh periodov v bassejne reki Selengi [Change of the summer atmospheric circulation over Eastern Asia and the formation of long periods of low water in the Selenga River Basin], Geografija i prirodnye resursy, 2012, no 3, pp. 61–68 (in Russian).
6. Bobrov V.A., Granina L.Z., Kolmogorov Ju.P., Hodzher T.V. Mikrojelementnyj sostav jeolovoj i rechnoj vzvesi Bajkala [Trace elements composition of aeolian and fluvial suspended matter of the Lake Baikal], Materialy XIII Rossijskoj konfkonferencii po ispol’zovaniju sinhrotronnogo izluchenija (Novosibirsk, July 17– 21, 2000), Novosibirsk, 2000, pp. 251–254 (in Russian).
7. Chalov S., Kasimov N., Lychagin M., Alexeevsky N. et al. Water resources assessment of the Selenga-Baikal river system // Geoöko. 2013. Vol. 34. P. 77–102.
8. Chalov S.R., Jarsjö J., Kasimov N. et al. Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia // Environm. Earth Sci. 2015. Vol. 73, Iss. 2. P. 663– 680.
9. Chebykin E.P., Sorokovikova L.M., Tomberg I.V. et al. Sovremennoe sostojanie vod r. Selengi na territorii Rossii po glavnym komponentam i sledovym jelementam [The current state of water of the Selenga River in Russia by main components and trace elements], Himija v interesah ustojchivogo razvitija, 2012, no 5, pp. 613–631 (in Russian).
10. Gaillardet J., Viers J., Dupre B. Trace Elements in River Waters // Treatise on Geochemistry. Vol. 5 / Ed by H.D. Holland, K.K. Turekian. Amsterdam: Elsevier, 2004. P. 225–272.
11. Garcia-Ruiz J.M., Regues D., Alvera B. et al. Flood generation and sediment transport inexperimental catchments affected by land use changes in the central Pyrenees // J. Hydrology. 2008. Vol. 356. P. 245–260.
12. Garmaev E.Zh. Stok rek bassejna ozera Bajkal [Outflow of the rivers of the Lake Baikal basin], Ulan-Ude, Izdatel’stvo Burjatskogo universiteta, 2010, 269 p. (in Russian).
13. Gerasimova M.I., Kasimov N.S., Gorbunova I.A. et al. Landshaftno-geohimicheskoe rajonirovanie bassejna Selengi [Landscape-geochemical zoning of the Selenga Basin], Vestnik Moskovskogo Unviersiteta, seria 5, Geografiya, 2014, no 6, pp. 66– 72 (in Russian).
14. Glazovskaja M.A. Geohimija prirodnyh i tehnogennyh landshaftov SSSR [Geochemistry of natural and technogenic landscapes of the USSR.], Moscow, Vysshaja shkola, 1988, 350 p. (in Russian).
15. Gordeev V.V. Geohimija sistemy reka-more [Geochemistry of the river-sea system], Moscow, IP Matushkina I.I., 2012, 452 p. (in Russian).
16. Horowitz A.J., Stephens V.C. The effects of land use on fluvial sediment chemistry for the conterminous U.S. – results from the first cycle of the NAWQA Program: trace and major elements, phosphorus, carbon, and sulfur // Scie. Total Environm. 2008. Vol. 400. P. 290–314.
17. Hu Z., Gao S. Upper crustal abundances of trace elements: A revision and update // Chem. Geology. 2008. Vol. 253. P. 205–221.
18. Inam E., Khantotong S., Kim K.W. et al. Geochemical distribution of trace element concentrations in the vicinity of Boroo gold mine, Selenge Province, Mongolia // Environm. Geochem. And Health. 2011. Vol. 33. P. 57–69.
19. Karthe D., Kasimov N., Chalov S. et al. Integrating multiscale data for the assessment of water availability and quality in the Kharaa-Orkhon-Selenga river system // Geography, Environment, Sustainability. 2014. Vol. 3(7). P. 65–86.
20. Kasimov N.S. Geohimija stepnyh i pustynnyh landshaftov [Geochemistry of the steppe and desert landscapes], Moscow, Izdatel’stvo Moskovskogo Universtiteta, 1988, 254 p. (in Russian).
21. Korytnyj L.M. Bassejnovaja koncepcija v prirodopol’zovanii [River Basin concept in environmental management], Irkutsk, Izdatel’stvo Instituta geografii SO RAN, 2001, 163 p. (in Russian).
22. Krajnov S.R., Ryzhenko B.N., Shvec V.M. Geohimija podzemnyh vod: teoreticheskie, prikladnye i jekologicheskie aspekty [Groundwater пeochemistry: theoretical, applied and environmental aspects], Moscow, CentrLitNefteGaz, 2012, 672 p. (in Russian).
23. Lisicyn A.P., Gordeev V.V. O himicheskom sostave vzvesi i vody morej i okeanov [About the chemical composition of suspended matter and water of the seas and oceans], Litologija i poleznye iskopaemye, 1974, no 3, pp. 38–58 (in Russian).
24. Lychagin M.Y., Tkachenko A.N., Kasimov N.S., Kroonenberg S.B. Heavy metals in the water, plants, and bottom sediments of the Volga river mouth area // J. Coastal Res. 2015. Vol. 31. P. 859–868.
25. Martin J.M., Maybeck M. Elemental mass-balance of material carried by world major rivers // Marine Chemistry. 1979. Vol. 7. P. 173–206.
26. Ogureeva G.N., Mikljaeva I.M., Bocharnikov M.V. Sovremennoe sostojanie i tendencii izmenenija gornyh jekosistem Mongolii [The current state and tendencies of change of mountain ecosystems of Mongolia], Vestnik Moskovskogo Unviersiteta, seria 5, Geografiya, 2012, no 5, pp. 28–34 (in Russian).
27. Olefeldt D., Roulet N., Giesler R., Persson A. Total waterborne carbon export and DOC composition from ten nested subarctic peatland catchments – importance of peatland cover, groundwater influence, and inter-annual variability of precipitation patterns // Hydrol. Processes. 2013. Vol. 27(16). P. 2280–2294.
28. Ollivier P., Radakovitch O., Hamelin B. Major and trace element partition and fluxes in the Rhфne River // Chem. Geology. 2011. Vol. 285. P. 15–31.
29. Perel’man A.I. Geohimija landshafta [Landscape geochemistry], Moscow, Vysshaja shkola, 1975, 341 p. (in Russian).
30. Perel’man A.I., Kasimov N.S. Geohimija landshafta [Landscape geochemistry], Moscow, Astreja-2000, 1999, 763 p. (in Russian).
31. Potemkina T.G. Tendencii formirovanija stoka nanosov osnovnyh pritokov ozera Bajkal v XX i nachale XXI stoletija [Trends in the formation of sediment load of the Lake Baikal main tributaries in the XX and the beginning of XXI centuries], Meteorologija i gidrologija, 2011, no 12, pp. 63–71 (in Russian).
32. Rudnick R.L., Gao S. Composition of the continental crust // Treatise on geochemistry. Vol. 3 / Ed by H.D. Holland, K.K. Turekian. Amsterdam: Elsevier, 2003. P. 1–64.
33. Savenko V.S. Himicheskij sostav vzveshennyh nanosov rek mira [Chemical composition of suspended sediment of rivers of the world], Moscow, GEOS, 2006, 175 p. (in Russian).
34. Shimaraev M.N., Starygina L.N. Zonal’naja cirkuljacija atmosfery, klimat i gidrologicheskie processy na Bajkale (1968– 2007 gg.) [The zonal circulation of the atmosphere, climate and hydrological processes at the Lake Baikal (1968–2007)], Geografija i prirodnye resursy, 2010, no 3, pp. 62–68 (in Russian).
35. Thorslund J., Jarsjö J., Chalov S.R., Belozerova E.V. Gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case // J. Environm. Monitoring. 2012. Vol. 14. P. 2780–2792.
36. Wedepohl K.H. The composition of the continental crust // Geochim. et Cosmochim. Acta. 1995. Vol. 59. P. 1217–1232.
Review
For citations:
Kasimov N.S., Lychagin M.Yu., Chalov S.R., Shinkareva G.L., Pashkina M.P., Romanchenko A.O., Promakhova E.V. CATCHMENT BASED ANALYSIS OF MATTER FLOWS IN THE SELENGA–BAIKAL SYSTEM. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2016;(3):67-81. (In Russ.)