SIMULATION OF STORM WAVES IN THE BARENTS SEA
Abstract
The implementation of spectral wave model SWAN for the Barents Sea, including the Northern part of the Atlantic Ocean was presented. Computations were performed by using special unstructured mesh, which has spatial resolution in the Atlantic Ocean is 1°, in the Barents – 0,5°. The wind forcing data from reanalysis NCER-CFSR and from mesoscale models WRF-ARW and COSMO-CLM used. The simulation results quality was provided by comparing modeled significant wave with satellite data. Numerical calculations are performed for January 2010, because in this time there was a series of storms. For compare we also used the results of AARI-PD2 wave model which implemented in the AARI. It is shown that both models are generally adequately reproduce the wind regime at points of stations. Synoptic variability of wind speed simulated well, but local features simulated much worse. The values of correlation coefficient (average 0.7) is significant and evidence that the overall variability simulated well, but they do not assure good quality of modeling wind waves. Wind wave modeling results revealed that in the current configuration, forcing COSMO-CLM and WRF produces a results close to the NOАА and NCEP-CFSR.
About the Authors
S. A. MyslenkovRussian Federation
Senior Research S cientist; Faculty of Geography, Department of Oceanology
V. S. Platonov
Russian Federation
Research Scientist, Ph.D. in Geography; Faculty of Geography, Department of Meteorology and Climatology
P. A. Toropov
Russian Federation
Associate Professor, Ph.D. in Geography; Faculty of Geography, Department of Meteorology and Climatology
A. A. Shestakova
Russian Federation
Post-Graduate Student; Department of Meteorology and Climatology
References
1. Arctic Syntool. URL: http://arctic.solab.rshu.ru (Accessed: 11.04.2015) (in Russian).
2. Aviso Satellite data. URL: http://www.aviso.oceanobs.com (Accessed: 13.04.2015).
3. Blinov D.V., Perov V.L., Peskov B.E., Rivin G.S. Jekstremal’naja bora 7–8 fevralja 2012 g. v rajone g. Novorossijsk i ee prognoz po modeli COSMO-Ru [Extreme bora of February 7-8,2012, in the Area of Novorossiysk and its forecast with the COSMO-Ru model], Vestn. Mosk. un-ta, Ser. 5. Geografija, 2013, no 4. pp. 36–43 (in Russian).
4. Boehm U., Kuecken M., Ahrens W. et al. CLM – The Climate Version of LM: Brief Description and Long-Term Applications // COSMO Newsletters. 2006, no 6, pp. 225–235.
5. Chen F., von Storch H. Trends and variability of North Pacific Polar Lows // Advances in Meteorology. 2013. Article ID 170387. 11 p.
6. CISL Research Data Archive. URL: http://rda.ucar.edu (Accessed: 11.04.2015).
7. CLM-Community homepage. URL: http://www.clmcommunity.eu (Accessed: 11.05.2015).
8. COSMO model description page. URL: http://www.cosmomodel.org/content/model/ documentation/core/default.htm (Accessed: 11.05.2015).
9. Dianskij N.A., Fomin V.V., Kabatchenko I.M. i dr. Vosproizvedenie cirkuljacii Karskogo i Pechorskogo morej s pomoshh’ju sistemy operativnogo diagnoza i prognoza morskoj dinamiki [Simulation of circulation of the Kara and Pechora Seas through the system of express diagnosis and prognosis of marine dynamics], Arktika: jekologija i jekonomika, 2014, no 1 (13), pp. 57– 73 (in Russian).
10. Dosio A., Panitz H.-J., Schubert-Frisius M., Lüthi. D. Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: evaluation over the present climate and analysis of the added value // Clim. Dyn. 2015, Vol. 44, Iss. 9–10. P 2637–2661.
11. Dykes J.D., Wang D.W., Book J.W. An evaluation of highresolution operational wave forecasting system in the Adriatic Sea // J. Marine Systems, 2009, Vol. 78, pp. 255–271.
12. Dymo v V.I., Pasechn ik T.A., La vrenov I.V. i dr. Sopostavlenie rezul’ tatov rasch etov po sov rem en n ym modeljam vetrovogo volnenija s dannymi naturnyh izmerenij [Comparison of modern wind-wave model results with field measurements], Meteorologija i gidrologija, 20 04, no 7, pp. 87–94 (in Russian).
13. Efimov V.V., Belokopytov V.N., Komarovskaja O.I. Chislennoe modelirovanie vetrovogo volnenija v severo-zapadnoj chasti Chernogo morja [Numerical modeling of wind waves in the northwestern part of the Black Sea], Morskoj gidrofizicheskij zhurn, 2000, no 6, pp. 36–43 (in Russian).
14. Giorgi F., Jones C., Asrar Gh.R. Addressing climate information needs at the regional level: the CORDEX framework // WMO Bull. 2009, Vol. 58 (3), pp. 175–183.
15. Gusdal Y., Carrasco A., Furevik B.R., Sćtra Ř. Validation of the operational wave model WAM and SWAN // Oceanography. 2009. Rep. N 18. 28 p.
16. Haas R., Pinto J.G. A combined statistical and dynamical approach for downscaling large-scale footprints of European windstorms // J. Geoph. Res. Lett. Vol. 39. L23804.
17. Janssen P., Abdalla S., Hersbsch H., Bidlot J-R. Error estimation of buoy, satellite, and model wave height data // J. Atmosphere and Oceanic Technology, 2006. Vol. 24, iss. 9. P. 1665–1677.
18. Lindsay R., Wensnahan M., Schweiger A., Zhang J. Evaluation of seven different atmospheric reanalysis products in the Arctic // J. Climate. 2014. Vol. 27. P. 2588–2606.
19. Makshtas A.P., Rubinshtejn K.G., Bychkova V.I. Predvaritel’naja ocenka kachestva vosproizvedenija meteorologicheskih parametrov v Arkticheskom rajone poljarnoj versiej modeli WRF [Preliminary assessment of the quality of reproduction of meteorological parameters in the Arctic region by polar version of WRF model], Tr. GU Gidrometcentra RF, 2009, Vyp. 344 (in Russian).
20. Nastavlenie gidrometeorologicheskim stancijam i postam. Vyp. 3, ch. 1. Meteorologicheskie nabljudenija na stancijah. [Manual on the hydrometeorological stations and posts], Leningrad, Gidrometeoizdat, 1985, 300 p. (in Russian).
21. Nastavlenie po kratkosrochnym prognozam pogody obshhego naznachenija [Manual on short-term weather forecasts].. Rosgidromet, RD 52.27.724-2009, Obninsk, «IG–SOCIN», 2009, 62 p. (in Russian).
22. NOAA Wave Watch 3. URL: http://polar.ncep.noaa.gov/waves (Accessed: 11.05.2015).
23. Reistad M., Breivik O., Haakenstad H. et al. A highresolution hindcast of wind and waves for the North Sea, the Norwegian Sea and the Barents Sea // J. Geophys. Res. 2011. Vol. 116. C05019.
24. Rezhim, diagnoz i prognoz vetrovogo volnenija v okeanah i morjah: Nauch.-metod. Posobie / Pod red. E.S. Nesterova [Climate, analysis and forecast of wind waves in the oceans and seas: scientific method. Allowance, Ed. E.S. Nesterov], Moscow, Issled. gruppa «Social’nye nauki», 2013, 295 p. (in Russian).
25. Saha S., Moorthi S., Wu X. et al. The NCEP Climate Forecast System version 2 // J. Climate. 2014. Vol. 27(6). P. 2185–2208.
26. Schoch G.C., Chao Y., Colas F. et al. An ocean observing and prediction experiment in Prince William Sound, Alaska // Bull. Amer. Meteorol. Soc. 2011. Vol. 92, Iss. 8. P. 997–1007.
27. Spravochnye dannye po rezhimu vetra i volnenija Barenceva, Ohotskogo i Kaspijskogo morej [Reference data of wind and waves climate of the Barents, Okhotsk Sea and Caspian Sea], SPb.: Rossijskij morskoj registr sudohodstva, 2003, 213 p. (in Russian).
28. SWAN Technical Documentation, SWAN Cycle III ver. 40.51A // Netherlands, Delft, University of Technology, 2007. Vol. 98.
29. Toropov P.A. Ocenka kachestva vosproizvedenija modeljami obshhej cirkuljacii atmosfery klimata Vostochno-Evropejskoj ravniny [Estimation of quality of simulation by atmospheric general circulation models of climate in the East European plain], Meteorologija i gidrologija, 2005, no 5, pp. 5–21 (in Russian).
30. Toropov P.A., Myslenkov S.A., Samsonov T.E. Chislennoe modelirovanie Novorossijskoj bory i svjazannogo s nej opasnogo vetrovogo volnenija [Numerical modeling of bora in Novorossiysk and associated wind waves], Vestn. Mosk. un-ta. Ser. 5, Geografija, 2013, no 2, pp. 38–46 (in Russian).
31. Toropov P.A., Myslenkov S.A., Shestakova A.A. Numerical simulation of Novorossiysk bora and related wind waves using the WRF-ARW and SWAN models, Russ. J. Earth Sci, 2012, Vol. 12. ES6001. doi: 10.2205/2012ES000524.
32. Toropov P.A., Shestakova A.A. Ocenka kachestva modelirovanija novorossijskoj bory s pomoshh’ju WRF-ARW [Quality assessment of Novorossiysk bora simulation by the WRFARW model], Meteorologija i gidrologija, 2014, no 7, pp. 38–51 (in Russian).
33. Van Pham T., Brauch J., Dieterich C. et al. New coupled atmosphere-ocean-ice system COSMO-CLM/NEMO: assessing air temperature sensitivity over the North and Baltic Seas // Oceanologia. 2014. Vol. 56 (2). P. 167–189. doi: 10.5697/oc.56-2.167.
34. Varentsov M., Verezemskaya P., Baranyuk A. et al. Investigation of polar mesocyclones in Arctic Ocean using COSMOCLM and WRF numerical models and remote sensing data // Geophysic. Res. Abstr. 2015. Vol. 17. EGU2015-7631.
35. Voevodin Vl.V., Zhumatij S.A., Sobolev S.I. et al. Praktika superkomp’jutera «Lomonosov» [Practice of «Lomonosov» Supercomputer], 2012, no 7, pp. 36–39. M.: Izd. dom «Otkrytye sistemy», 2012 (in Russian). WRF model homepage. URL: http://www.wrf-model.org/index.php (Accessed: 11.05.2015).
36. Zelen’ko A.A., Strukov B.S., Resnjanskij Ju.D., Martynov S.L. Sistema prognozirovanija vetrovogo volnenija v Mirovom okeane i morjah Rossii [The forecast system of wind waves in the oceans and seas of Russia], Tr. gos. okeanograficheskogo institute, 2014, Vol. 215, pp. 90–101 (in Russian).
Review
For citations:
Myslenkov S.A., Platonov V.S., Toropov P.A., Shestakova A.A. SIMULATION OF STORM WAVES IN THE BARENTS SEA. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2015;(6):65-75. (In Russ.)