Preview

Lomonosov Geography Journal

Advanced search

Invasive diatoms in the surface layer of bottom sediments in the Norwegian, Greenland and Barents seas and their possible application for paleoceanographic reconstructions

https://doi.org/10.55959/MSU0579-9414.5.80.6.10

Abstract

The paper presents the results of studying the invasive diatom species in the sediments’ surface layer of the Norwegian, Greenland and Barents seas. The Redundancy Analysis (RDA) method helped to identify the main environmental factors influencing the distribution of invasive diatoms. The duration of sea-ice cover and the position of the marginal ice zone within the study area are the principal ones. The geographic distribution of invasive diatom species was established. The North Pacific species Neodenticula seminae was found only in the North Atlantic, its distribution is limited to 12–15° EL. The presence of relatively warm-water diatom species Shionodiscus oestrupii, Coscinodiscus radiatus and C. asteromphalus is associated with the penetration of warm Atlantic currents. The distribution of sea-ice and ice-neritic species directly depends on the location of the seasonal sea-ice cover. High contents of sea-ice (up to 30%) and ice-neritic (more than 45%) diatom species in sediments may indicate the proximity of the sea ice boundary in the recent geological past, while low contents (about 2 and 15%, respectively) indicate their invasion by currents or as a result of iceberg transport. The results show that invasive diatom species could be used as paleomarkers of the paleoceanological changes, affecting the intensity of warm Atlantic water influx into the Arctic, and the boundaries of seasonal sea-ice cover and the marginal ice zone.

About the Authors

E. A. Agafonova
Shirshov Institute of Oceanology of Russian Academy of Sciences, Lisitzin Laboratory of Physical-Geological Studies
Россия

Senior Scientific Researcher, Ph.D. in Geography 



M. D. Kravchishina
Shirshov Institute of Oceanology of Russian Academy of Sciences, Lisitzin Laboratory of Physical-Geological Studies
Россия

Leading Scientific Rsearcher, Ph.D. in Geology and Mineralogy 



References

1. Agafonova E.A., Klyuvitkin A.A., Novigatsky A.N. et al. Invasive Diatom Species in Sinking Material of the Lofoten Basin (the Norwegian Sea), Doklady Earth Sciences, 2025, vol. 524, no. 3, DOI: 10.1134/S1028334X25606443.

2. Agafonova E., Novichkova E., Novigatsky A. et al. Diatom and dinocyst production, composition and flux from the annual cycle sediment trap study in the Barents Sea, Geosciences, 2023, no. 13(1), DOI: 10.3390/geosciences13010001.

3. Aksenov Y., Popova E.E., Yool A. et al. On the future navigability of Arctic Sea routes: High-resolution projections of the Arctic Ocean and sea ice, Mar. Pol., 2017, vol. 75, p. 300–317, DOI: 10.1016/j.marpol.2015.12.027.

4. Andersen C., Koç N., Jennings A. et al. Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: Implications for the Holocene climate variability, Paleoceanography, 2004, no. 19, PA2003, DOI: 10.1029/2002PA000873.

5. Ardyna M., Babin M., Gosselin M. et al. Fall Phytoplankton Blooms, Geophys. Res. Lett., 2014, vol. 41, p. 6207–6212.

6. Battarbee R.W. A new method for the estimation of absolute microfossil numbers, with reference especially to diatoms, Limnology and Oceanology, 1973, no. 18(4), p. 647–653.

7. Bjarnadóttir L.R., Winsborrow M.C.M., Andreassen K. Deglaciation of the central Barents Sea, Quaternary Science Reviews, 2014, vol. 92, p. 208–226.

8. Braak ter C.J.F., Smilauer P. Canoco reference manual and user’s guide: software for ordination (version 5.10), NY, USA, Microcomputer Power, 1998, 536 p.

9. Buckley M.W., Marshall J. Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: a review, Rev. Geophys. 2016, vol. 54, p. 5–63.

10. Diatomovye vodorosli SSSR (iskopaemye i sovremennye), t. I [The diatoms of the USSR (fossil and recent), vol. 1], A.I. Proshkina-Lavrenko (еd.), Leningrad, Nauka Publ., 1974, 403 p. (In Russian)

11. Horner R. Arctic sea-ice biota, The Arctic Seas. Climatology, Oceanography, Geology, and Biology, Y. Herman (ed.), New York, Van Nostrand Reinhold Company, 1989, p. 123–146.

12. Ivanova E.V., Murdmaa I.O. [Postglacial paleoceanology of the Barents Sea], Sistema Barentseva morya [The Barents Sea System], A.P. Lisitzin (еd.), Moscow, GEOS Publ., 2021, 109–126, DOI: 10.29006/978-5-6045110-0-8/(10). (In Russian)

13. Johannessen O., Bobylev L., Shalina E. et al. Sea Ice in the Arctic Past, Present and Future, Berlin, Heidelberg, Germany, Springer, 2019, 575 p., URL: https://doi.org/10.1007/978-3-030-21301-5.

14. Keghouche I., Counillon F., Bertino L. Modeling dynamics and thermodynamics of icebergs in the Barents Sea from 1987 to 2005, Journal of Geophysical Research, 2010, vol. 115, C12062, p. 1–14.

15. Klyuvitkin A.A., Kravchishina M.D., Nemirovskaya I.A. et al. Studies of sediment systems of the European Arctic during the 75th Cruise of the R/V “Akademik Mstislav Keldysh”, Oceanology, 2020, no. 60(3), p. 421–423.

16. Koç Karpuz N., Schrader H. Surface sediment diatom distribution and Holocene paleo-temperature variations in the Greenland, Iceland and Norwegian Sea, Paleoceanography, 1990, vol. 5, p. 557–580.

17. Kravchishina M.D., Novigatskii A.N., Savvichev A.S. et al. Sedimentation systems definition of the Barents Sea and Norwegian-Greenland basin during 68th cruise of the research vessel Academic Mstislav Keldysh, Oceanology, 2019, no. 59(1), p. 173–176.

18. Lind S., Ingvaldsen R.B. Variability and impacts of Atlantic Water entering the Barents Sea from the north, Deep Sea Res., I, 2012, vol. 62, p. 70–88.

19. Loeng H. Features of the physical oceanographic conditions of the Barents Sea, Polar Res., 1991, 10, 5–18.

20. Matul A.G., Novichkova E.A., Klyuvitkina T.S. et al. Paleoceanology of the Norwegian-Greenland Basin in the Middle-Late Holocene based on the microfossil distribution, Paleontological Journal, 2024, vol. 58, no. 7, p. 745‒751.

21. Maznev S.V., Kokin O.V., Arkhipov V.V. et al. Modern and Relict Evidence of Iceberg Scouring at the Bottom of the Barents and Kara Seas, Oceanology, 2023, no. 63(1), p. 84‒94, DOI: 10.1134/S0001437023010113.

22. Miettinen A., Divine D.V., Husum K. et al. Exceptional Ocean surface conditions on the SE Greenland shelf during the Medieval Climate Anomaly, Paleoceanography, 2015, vol. 30, p. 1657‒1674, DOI: 10.1002/2015PA002849.

23. Miettinen A., Koç N., Husum K. Appearance of the Pacific diatom Neodenticula seminae in the northern Nordic Seas – An indication of changes in Arctic Sea ice and ocean circulation, Marine Micropaleontology, 2013, vol. 99, p. 2–7.

24. Oksman M., Juggins S., Miettinen A. et al. The biogeography and ecology of common diatom species in the northern North Atlantic, and their implications for paleoceanographic reconstructions, Marine Micropalaeontology, 2019, no. 148, p. 1–28, DOI: 10.1016/j.marmicro.2019.02.002.

25. Pautova L., Kravchishina M., Silkin V. et al. The Influence of the Atlantic Water Boundary Current on the Phytoplankton Composition and Biomass in the Northern Barents Sea and the Adjacent Nansen Basin, J. Mar. Sci. Eng., 2024, 12, 1678, URL: https://doi.org/10.3390/jmse12091678.

26. Pautova L.A. [Phytoplankton of the Barents Sea], Sistema Barentseva morya [The Barents Sea System], A.P. Lisitzin (еd.), Moscow, GEOS Publ., 2021, p. 317‒330. DOI: 10.29006/978-5-6045110-0-8/(25). (In Russian)

27. Pisarev S.V. [Review of the Barents Sea hydrological conditions], Sistema Barentseva morya [The Barents Sea System], A.P. Lisitzin (еd.), Moscow, GEOS Publ., 2021, p. 153‒166, URL: https://doi.org/10.29006/978-56045110-0-8/(13). (In Russian)

28. Polyakov I., Pnyushkov A., Alkire M. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean, Science, 2017, vol. 356, no. 6335, p. 285–291.

29. Polyakova E.I. Arkticheskie morya Evrazii v pozdnem kainozoe [Arctic seas of Eurasia in the late Cenozoic], Moscow, Nauchnyi mir Publ., 1997, 145 p. (In Russian)

30. Polyakova Ye.I. Diatom assemblages in the surface sediments of the Kara Sea (Siberian Arctic) and their relationship to oceanological conditions, Siberian River Run-off in the Kara Sea: Characterization, Quantification, Variability, and Environmental Significance, Proceedings in Marine Sciences, R. Stein, K. Fahl, D.K. Fütterer, E.M. Galimov, O.V. Stepanets (еds.), Amsterdam, Elsevier, 2003, p. 375−399.

31. Polyakova Y.I., Novichkova E.A., Agafonova E.A. [Diatoms and aquatic palynomorphs in the bottom sediments of the Barents Sea: Main patterns of distribution and use in paleooceanological studies], Sistema Barentseva morya [The Barents Sea System], A.P. Lisitzin (еd.), Moscow, GEOS Publ., 2021, p. 64−95, DOI: 10.29006/978-5-6045110-0- 8/(8). (In Russian)

32. Poulin M. Ice Diatoms: the Arctic, Polar Marine Diatoms, L. Medlin and J. Priddle (еds.), Cambridge, British Antarctic Survey, Natural Environment Res., 1990, p. 15‒18.

33. Rat’kova T., Wassmann P. Seasonal variation and spatial distribution of phytoplankton protozooplankton in the central Barents Sea, Journ. Marine Syst., 2002, 38, p. 47–75.

34. Reid P., Johns D., Edwards M. et al. A biological consequence of reducing Arctic ice cover: Arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years, Global Change Biology, 2007, vol. 13, p. 1910–1921.

35. Risebrobakken B., Moros M., Ivanova E.V. et al. Climate and oceanographic variability in the SW Barents Sea during the Holocene, Holocene, 2010, vol. 20, no. 4, p. 609–621, DOI: 10.1177/0959683609356586.

36. Roukhiyainen M.I. [Qualitative composition of phytoplankton in the Barents Sea], Sostav i raspredelenie planktona i bentosa yuzhnoi chasti Barentseva moray [Composition and distribution of plankton and benthos in the southern part of the Barents Sea.], Moscow, Leningrad, Nauka Publ., 1966, p. 3–23. (In Russian)

37. Sistema Barentseva morya [The Barents Sea System], A.P. Lisitzin (еd.), Moscow, GEOS Publ., 2021, 672 p. (In Russian)

38. Stroeve J.C., Holland M.M., Meier W. et al. Arctic Sea ice decline: Faster than forecast, Geophys. Res. Lett., 2007, 34, L09501, URL: https://doi.org/10.1029/2007GL029703.

39. Strong C., Rigor I.G. Arctic marginal ice zone trending wider in summer and narrower in winter, Geophys. Res. Lett., 2013, 40, p. 4864–4868, URL: https://doi.org/10.1002/grl.50928,2013.

40. von Quillfeldt C.H. Distribution of diatoms in the Northern Water Polynya, Greenland, Journal of Marine Systems, 1997, no. 10, p. 211–240.

41. Web sources

42. ESIMO AANII, URL: https://www.aari.ru/departments/tsentr-ledovoi-gidrometeorologicheskoi-informatsii (access date 05.05.2025)

43. Garcia H.E., Boyer T.P., Baranova O.K. et al. 2019, World Ocean Atlas 2018, Product Documentation, A. Mishonov, Technical Editor, URL: https://www.ncei.noaa.gov/ (access date 05.05.2025).

44. Norsk Polarinstitutt. The sea ice frequency in the Norwegian Arctic, monthly for 1993‒2022, URL: https://npolar.no/en/themes/the-marginal-ice-zone/ (access date 05.05.2025).

45. U.S. National Ice Center, 2020, U.S. National Ice Center Arctic and Antarctic Sea Ice Concentration and Climatologies in Gridded Format (G10033, Version 1), F. Fetterer & J.S. Stewart (сomps.) [Data Set], Boulder, Colorado USA. National Snow and Ice Data Center, URL: https://doi.org/10.7265/46cc-3952 (access date 05.05.2025).


Review

For citations:


Agafonova E.A., Kravchishina M.D. Invasive diatoms in the surface layer of bottom sediments in the Norwegian, Greenland and Barents seas and their possible application for paleoceanographic reconstructions. Lomonosov Geography Journal. 2025;(6):131-142. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.80.6.10

Views: 14

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)