Thermodenudation-based regionalization of the Yamal peninsula
https://doi.org/10.55959/MSU0579-9414.5.80.6.9
Abstract
Climate change in the Arctic intensifies cryogenic relief-forming processes. Thermal denudation in northern Eurasia and North America, where wedge and tabular ground ice are widespread, occurs as a process that combines the melting of ice and frozen ground thawing accompanied by the downslope movement of thawed material. The result of the process is the formation of thermocirques and thermoterraces. Using remote sensing data with interactive interpretation and machine learning techniques, global databases of these landformsʼ distribution are being developed. The published databases provide new opportunities of further analyzing the spatial manifestations of the phenomena. The authors propose an explanation of the natural conditions and causes that determine the uneven distribution of thermocirques and thermoterraces on the Yamal Peninsula, as well as their future development under the changing conditions. The source data include the DARTS database of thermal denudation landforms in the Arctic, as well as information on the ice content in the upper layers of deposits, the distribution of ice wedges and tabular ground ice, and the relief dissection. To assess how changing permafrost conditions amplify thermal denudation, we used data on the changes of ground temperature at a depth of 2 m and the thickness of the active (seasonally thawed) layer from 1997 to 2021. We found that the presence of near-surface ground ice is a necessary but insufficient condition for the formation of thermocirques and thermoterraces. A key factor of their emergence and long-term activity is the vertical relief dissection, which enables the removal of thawed material from retreating headwalls to the local base of erosion. The authors have subdivided the Yamal Peninsula into zones based on the current intensity of thermal denudation. Four zones were identified, differing in the spatial density of thermal denudation landforms and in their predicted future development. These differences are determined by the cryogenic structure of the deposits, relief parameters and changes in the permafrost conditions.
About the Authors
A. I. KizyakovRussian Federation
Leading Scientific Researcher, Ph.D. in Geography
I. I. Tarasevich
Russian Federation
Postgraduate student
L. I. Zotova
Russian Federation
Senior Scientific Researcher, Ph.D. in Geography
V. I. Grebenets
Russian Federation
Associate Professor, Ph.D. in Geology and Mineralogy
V. V. Rogov
Russian Federation
Professor, D.Sc. in Geography
N. A. Kostenkov
Russian Federation
Postgraduate student
I. D. Streletskaya
Russian Federation
Acting Head of the Department, Associate Professor, Ph.D. in Geology and Mineralogy
References
1. Babkina E.A., Leibman M.O., Dvornikov Y.A. et al. Activation of Cryogenic Processes in Central Yamal as a Result of Regional and Local Change in Climate and Thermal State of Permafrost, Russian Meteorology and Hydrology, 2019, vol. 44, p. 283–290, DOI: 10.3103/S1068373919040083.
2. Badu Yu.B., Trofimov V.T., Vasilʼchuk Yu.K. [The main patterns of distribution and types of tabular ground ice in the northern part of the West Siberian Plate], Plastovye lʼdy kriolitozony [Tabular ground ice in the cryolithic zone], Yakutsk, 1982, p. 13‒24. (In Russian)
3. Barth S., Nitze I., Juhls B. et al. Rapid changes in retrogressive thaw slump dynamics in the Russian High Arctic based on very high-resolution remote sensing, Geophysical Research Letters, 2025, vol. 52, iss. 7, e2024GL113022, DOI: 10.1029/2024GL113022.
4. Baulin V.V. Mnogoletnemerzlye porody neftegazonosnykh raionov SSSR [Permafrost in oil- and gas-bearing regions of the USSR], Moscow, Nedra Publ., 1985, p. 176. (In Russian)
5. Bolikhovskaya N.S., Bolikhovskij V.F. [Paleogeographic conditions of continental syncryogenesis in central Yamal Peninsula], Materialy Pervoi konferentsii geokriologov Rossii [Proceedings of the First Conference of Russian Geogryologists], vol. 3, Moscow, MGU Publ., 1996, p. 9–15. (In Russian)
6. Dubikov G.I. Sostav i kriogennoe stroenie merzlykh tolshch Zapadnoi Sibiri [Composition and cryogenic structure of frozen strata of Western Siberia], Moscow, GEOS, 2002, 246 p. (In Russian)
7. Karta geneticheskikh tipov i lʼdistosti verkhnei 10-metrovoi chasti razreza mnogoletnemerzlykh porod ZapadnoSibirskoi plity. Masshtab 1:1 000 000 [Map of genetic types and ice content of the upper 10-meter part of the permafrost section of the West Siberian Plate. Scale 1:1 000 000], V.T. Trofimov (еd.), Moscow, Tsentrgeologiya Publ., 1982. (In Russian)
8. Khomutov A.V., Babkina E.A., Khairullin R.R. et al. Faktory aktivizatsii termodenudatsii i aktivnostʼ termotsirkov na Tsentralʼnom Yamale v 2010–2018 gg. [Factors of thermal denudation activation and thermicirques activity within central Yamal Peninsula in 2010–2018], Arctic and Antarctic Research, 2024, vol. 70, no. 2, p. 222–237, DOI: 10.30758/0555-2648-2024-70-2-222-237. (In Russian)
9. Kislov A.V., Alyautdinov A.R., Baranskaya A.V. et al. Prognoz izmenenii klimata i intensivnosti ekzogennykh protsessov na territorii Yamalo-Nenetskogo avtonomnogo okruga [Projection of climate change and the intensity of eogenous processes on the territory of the Yamalo-Nenets autonomous district], Dokl. Ros. аkad. nauk, Nauki o Zemle, 2023, vol. 510, no. 2. p. 233–240, DOI: 10.31857/S2686739723600388. (In Russian)
10. Kizyakov A.I. Dinamika termodenudatsionnykh protsessov na poberezhʼe Yugorskogo poluostrova [The dynamics of thermodenudation processes at the Yugorsky Peninsula coast], Kriosfera Zemli, 2005, vol. 9, no. 1, p. 63‒67. (In Russian)
11. Kizyakov A.I., Leibman M.O., Perednya D.D. Destruktivnye relʼefoobrazuyushchie protsessy poberezhii arkticheskikh ravnin s plastovymi podzemnymi lʼdami [Destructive relief-forming processes at the coasts of the Arctic plains with tabular ground ice], Kriosfera Zemli, 2006, vol. 10, no. 2, p. 79‒89. (In Russian)
12. Klimanova O.A., Kolbovskii E.Yu. Fiziko-geograficheskoe raionirovanie kak metod delimitatsii granits poluostrovov (na primere poluostrovov Yamal i Gydanskii) [Physicalgeographical regionalization as a method of peninsula boundaries delimitation: a case study of the Yamal and Gydan peninsulas], Problemy regionalʼnoi ekologii, 2018, no. 4, p. 82–88, DOI: 10.24411/1728-323X-2018-14082. (In Russian)
13. Konishchev V.N. Reaktsiya vechnoi merzloty na poteplenie klimata [Response of permafrost to the climate warming], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2009, no. 4, p. 10‒20. (In Russian)
14. Konyakhin M.A. Podzemnye lʼdy i dinamika kriogeosistem [Ground ice and cryogeosystem dynamics], Geoekologiya Severa, Moscow, MGU Publ., 1992, p. 43‒50. (In Russian)
15. Kozin V.V. [Landscape zoning], Atlas Yamalo-Nenetskogo avtonomnogo okruga [Atlas of the Yamal-Nenets Autonomous Okrug], S.I. Larin (еd.), Omsk, Omskaya kartograficheskaya fabrika Publ., 2004, p. 221. (In Russian)
16. Leibman M.O., Kizyakov A.I., Nesterova N.B. et al. Klassifikatsiya kriogenno-opolznevykh form relʼefa dlya tselei kartografirovaniya i prognoza [Classification of cryogenic-landslide landforms for mapping and prediction], Arctic and Antarctic Research, 2023, vol. 69, no. 4, p. 486–500, DOI: 10.30758/0555-2648-2023-69-4-486-500. (In Russian)
17. Leibman M., Kizyakov A., Zhdanova Y. et al. Coastal retreat due to thermodenudation on the Yugorsky Peninsula, Russia during the last decade, Update since 2001–2010, Remote Sensing, 2021, vol. 13, iss. 20, 4042, DOI: 10.3390/rs13204042
18. Nesterova N.B., Khomutov A.V., Leibman M.O. et al. The inventory of retrogressive thaw slumps (thermocirques) in the North of West Siberia based on 2016–2018 satellite imagery mosaic, Earthʼs Cryosphere, 2021, vol. 25, no. 6, p. 34–41, DOI: 10.15372/KZ20210604.
19. Nitze I., Heidler K., Nesterova N. et al. DARTS: Multi-year database of AI-detected retrogressive thaw slumps in the circum-arctic permafrost region, Scientific Data, 2025, no. 12, 1512, DOI: 10.1038/s41597-025-05810-2.
20. Obu J., Westermann S., Bartsch A. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale, Earth-Science Reviews, 2019, vol. 193, p. 299-316, DOI: 10.1016/j.earscirev.2019.04.023.
21. Parmuzin S.Yu., Sukhodolʼskii S.E. Plastovye lʼdy Srednego Yamala i ikh rolʼ v formirovanii relʼefa [Tabular ground ice of the Middle Yamal and its role in the formation of relief], Plastovye lʼdy kriolitozony, Yakutsk, 1982, p. 51‒61. (In Russian)
22. Pavlov A.V., Malkova G.V. Dinamika kriolitozony v usloviyakh menyayushchegosya klimata XX‒XXI vekov [Dynamics of Permafrost Zone of Russia under changing climate of the 20th‒21st centuries], Izvestiya RAN, Seriya Geogr., 2010, no. 5, p. 59‒66. (In Russian)
23. Solomatin V.I., Konyakhin M.A., Nikolaev V.I. et al. Usloviya zaleganiya i sostav plastovykh lʼdov na poluostrove Yamal [Conditions of occurrence and composition of tabular ground ice on the Yamal Peninsula], Materialy glyatsiologicheskikh issledovanii, 1993, no. 77, p. 139‒147. (In Russian)
24. Streletskaya I.D., Leibman M.O. Kriogeokhimicheskaya vzaimosvyazʼ plastovykh lʼdov, kriopegov i vmeshchayushchikh ikh otlozhenii Tsentralʼnogo Yamala [Cryogeochemical interrelation of massive ground ice, cryopegs and enclosing deposits of Central Yamal], Kriosfera Zemli, 2002, vol. 4, no. 3, p. 15‒24. (In Russian)
25. Tarasevich I.I., Leibman M.O., Kizyakov A.I. et al. Rasprostranenie i dinamika termotsirkov na klyuchevom uchastke Tsentralʼnogo Yamala po materialam distantsionnogo zondirovaniya [Spatial distribution and dynamics of thermocirques in a key area of Central Yamal based on remote sensing data], Arctic and Antarctic Research, 2024, vol. 70, no. 3, p. 391–411, DOI: 10.30758/0555-2648-2024-70-3-391-411. (In Russian)
26. Tumelʼ N.V. [Permafrost], Atlas Yamalo-Nenetskogo avtonomnogo okruga [Atlas of the Yamal-Nenets Autonomous Okrug], S.I. Larin (еd.), Omsk, Omskaya kartograficheskaya fabrika Publ., 2004, p. 156–157. (In Russian)
27. Vasilʼchuk Yu.K., Trofimov V.T., Badu Yu.B. [East Yamal region], Geokriologiya SSSR, Zapadnaya Sibirʼ [Geocryology of the USSR. Western Siberia], E.D. Ershov (еd.), Moscow, Nedra Publ., 1989, p. 172‒180. (In Russian)
28. Witharana C., Udawalpola M.R., Liljedahl A.K., et al. Automated Detection of Retrogressive Thaw Slumps in the High Arctic Using High-Resolution Satellite Imagery, Remote Sensing, 2022, vol. 14, no. 17, 4132, DOI: 10.3390/rs14174132.
29. Yang Y., Rodenhizer H., Rogers B.M. et al. A Collaborative and Scalable Geospatial Data Set for Arctic Retrogressive Thaw Slumps with Data Standards, Scientific Data, 2025, vol. 12, 18, DOI: 10.1038/s41597-025-04372-7.
30. Zhigarev L.A. Termodenudatsionnye protsessy i deformatsionnoe povedenie protaivayushchikh gruntov [Thermal denudation processes and deformation of thawing grounds], Moscow, Nauka Publ., 1975, 110 p. (In Russian)
31. Web sources
32. CALM North Summary Data Table. Circumpolar Active Layer Monitoring Network, URL: https://www2.gwu.edu/~calm/data/north.htm (access date 14.08.2025).
33. Porter C., Morin P., Howat I. et al. ArcticDEM, Version 4.1, Harvard Dataverse, V1, 2018, URL: https://doi.org/10.7910/DVN/3VDC4W (access date 02.09.2025).
34. Westermann S., Barboux C., Bartsch A. et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost Ground Temperature for the Northern Hemisphere, v4.0. NERC EDS Centre for Environmental Data Analysis, 04 April 2024, 2024а, URL: https://dx.doi.org/10.5285/20ec12f5d1f94e99aff2ed796264ee65 (access date 15.08.2025).
35. Westermann S., Barboux C., Bartsch A. et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost active layer thickness for the Northern Hemisphere, v4.0. NERC EDS Centre for Environmental Data Analysis, 24 April 2024, 2024б, URL: https://dx.doi.org/10.5285/d34330ce3f604e368c06d76de1987ce5 (access date 15.08.2025).
Review
For citations:
Kizyakov A.I., Tarasevich I.I., Zotova L.I., Grebenets V.I., Rogov V.V., Kostenkov N.A., Streletskaya I.D. Thermodenudation-based regionalization of the Yamal peninsula. Lomonosov Geography Journal. 2025;(6):118-130. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.80.6.9
JATS XML





























