NDVI as an indicator of cryogenic processes and technogenesis dynamics on the Сhukotka peninsula
https://doi.org/10.55959/MSU0579-9414.5.80.6.8
Abstract
The current climate change in the Arctic has a significant impact on permafrost situation of the region, which, in its turn, determines the growth conditions of aboveground vegetation cover. The work is devoted to identifying spatial patterns in environmental conditions of tundra vegetation growth, topography, surface deposits and permafrost conditions for a study area within the Chukotka Peninsula. The results of field survey, supplemented by the analysis of long-term trends of the NDVI vegetation index and correlated with long-term monitoring data on the active layer thickness and projective cover of vegetation, made it possible to reveal the current evolution of the vegetation cover as a result of climate change and anthropogenic impact. A spatial sequence of plant communities was lined up, reflecting the range of NDVI values within the study area. A weak (up to 0,3 for 20 years) but stable increase in NDVI values was revealed for the entire study area. Within plains the increase in vegetation growth intensity over the past 20 years is generally confined to the topographic depressions formed both under the influence of natural conditions and the anthropogenic impact. In the long-term the latter could become a driver of bioproductivity, since it increases the roughness of the surface. The results show that under climate warming in the Arctic the dynamics of permafrost conditions in the cryolithic zone is the leading factor determining the change in the growing conditions of tundra vegetation in the Chukotka Peninsula.
About the Authors
M. Yu. GrishchenkoRussian Federation
Senior Scientific Researcher, Ph.D. in Geography
A. A. Maslakov
Russian Federation
Leading Scientific Researcher, Ph.D. in Geography
A. G. Grigoryan
Russian Federation
Master student
I. A. Aldoshin
Russian Federation
Master student
References
1. Abramov A., Davydov S., Ivaschenko A. et al. Two decades of active layer thickness monitoring in northeastern Asia, Polar Geography, 2021, vol. 44(3), p. 186-202, DOI: 10.1080/1088937X.2019.1648581.
2. A fanasenko V.E., Zamolotchikova S.A., Tishin M.I. et al. [North Chukchi region], Geokriologiya SSSR. Vostochnaya Sibir’ i Dal’nii Vostok [Geocryology of the USSR. Eastern Siberia and the Far East], E.D. Ershova (еd.), Moscow, Nedra Publ., 1989, p. 280‒293. (In Russian)
3. Annenskaya G.N., Vidina A.A., Zhuchkova V.K. et al. Morfologicheskaya struktura geograficheskogo landshafta [Morphological structure of the geographical landscape], Moscow, Moscow University Press, 1962, 55 p. (In Russian)
4. Biskaborn B.K., Smith S.L., Noetzli J. et al. Permafrost is warming at a global scale, Nature communications, 2019, vol. 10(1), DOI: 10.1038/s41467-018-08240-4.
5. Fokeng R.M., Fogwe Z.N. Landsat NDVI-based vegetation degradation dynamics and its response to rainfall variability and anthropogenic stressors in Southern Bui Plateau, Cameroon, Geosystems and Geoenvironment, 2022, vol. 1, iss. 3, DOI: 10.1016/j.geogeo.2022.100075.
6. Frost G.V., Epstein H.E. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s., Global change biology, 2014, vol. 20, no. 4, 1264‒1277, DOI: 10.1111/gcb.12406.
7. Frost G.V., Bhatt U.S., Epstein H.E. et al. Arctic Report Card 2020: Tundra Greenness (NOAA, 2020), DOI: 10.25923/46rm-0w23.
8. Frost G.V., Bhatt U.S., Macander M.J. et al. The changing face of the Arctic: four decades of greening and implications for tundra ecosystems, Frontiers in Environmental Science, 2025, 13, 1525574, DOI: 10.3389/fenvs.2025.1525574.
9. Guo W.C., Liu H.Y., Anenkhonov O.A. et al. Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes, Agricultural and Forest Meteorology, 2018, vol. 252, p. 10‒17, DOI: 10.1016/j.agrformet.2018.01.010.
10. Heijmans M.M., Magnússon R.Í., Lara M.J. et al. Tundra vegetation change and impacts on permafrost, Nature Reviews Earth & Environment, 2022, vol. 3(1), p. 68‒84, DOI: 10.1038/s43017-021-00233-0.
11. Kaverin D., Malkova G., Zamolodchikov D. et al. Long-term active layer monitoring at CALM sites in the Russian European North, Polar Geography, 2021, vol. 44, iss. 3, p. 203‒216, DOI: 10.1080/1088937X.2021.1981476.
12. Kokelj S.V., Jorgenson M.T. Advances in thermokarst research, Permafrost and Periglacial Processes, 2013, vol. 24, no. 2, p. 108‒119, DOI: 10.1002/ppp.1779.
13. Krasnaya kniga Chukotskogo avtonomnogo okruga, Tom 2, Rasteniya i griby (ofitsial’noe izdanie) [Red Book of Chukotka Autonomous Okrug. Rare and Endangered Species of Plants and Fungi], M.G. Khoreva, D.I. Litovka (еds.), Nizhny Novgorod, Teksotel Publ., 2022, 240 p. (In Russian)
14. Kuzyakin L.P. Maslakov A.A., Semenov P.B. et al. Metan v plastovykh l’dakh Vostochnoi Chukotki kak indikator ikh genezisa [Methane in massive ice beds of Eastern Chukotka as an indicator of their origin], Led i Sneg, vol. 64, no. 3, p. 447‒463, DOI: 10.31857/s2076673424030106. (In Russian)
15. Labutina I.A. Deshifrifovanie aerokosmicheskikh snimkov: ucheb. posobie dlya studentov vuzov [Aerial photo interpretation: Textbook. Manual for university students], Moscow, Aspekt Press, 2004, 181 p. (In Russian)
16. Lloyd A.H., Yoshikawa K., Fastie C.L. et al. Effects of permafrost degradation on woody vegetation at arctic treeline on the Seward Peninsula, Alaska, Permafrost and Periglacial Processes, 2003, vol. 14, no. 2, p. 93‒101.
17. Maslakov A., Grishchenko M., Grigoryan A. et al.Long-term effect of warming-induced permafrost thawing on tundra vegetation ‒ the evidence from the Chukchi Peninsula (Russian northeast), Journal of the Geographical Institute “Jovan Cvijić” SASA, 2024, vol. 74, iss. 3, p. 291‒309, DOI: 10.2298/IJGI2403291M.
18. Maslakov A., Zotova L., Komova N. et al. Vulnerability of the Permafrost Landscapes in the Eastern Chukotka Coastal Plains to Human Impact and Climate Change, Land, 2021, vol. 10, no. 5, p. 1‒15, DOI: 10.3390/land10050445.
19. Maslakov A.A., Nyland K.E., Komova N.N. et al. Community ice cellars in eastern Chukotka: Climatic and anthropogenic influences on structural stability, Geography, Environment, Sustainability, 2020, vol. 13, no. 3, p. 49‒56, DOI: 10.24057/2071-9388-2020-71.
20. Maslakov A.A., Streletskii D.A., Zamolodchikov D.G. Mnogoletnii monitoring osadki pochv i verhney tolshchi mnogoletnemyorzlyh porod na ploshchadke nauchnogo poligona “Primorskiye ravniny Мostochnoy Сhukotki” [Long-term monitoring of soil and surficial permafrost thaw subsidence on Eastern Chukotka Coastal Plain research station], Kriosfera Zemli, 2025, vol. 29, no. 5, p. 3‒19. (In Russian)
21. Moskalenko N.G., Dzhoergenson T., Kanevskii M.Z. et al. Vzaimosvyazi rastitel’nosti i sezonnogo protaivaniya mnogoletnemerzlykh porod v arkticheskikh tundrakh Yamala i Alyaski [The comparative analysis of vegetation and permafrost in arctic tundras of Yamal and Alaska], Izvestiya Russkogo geograficheskogo obshchestva, 2014, vol. 146, no. 3, p. 64‒79. (In Russian)
22. Neshataev Yu.N. Metody analiza geobotanicheskikh materialov: Uchebnoe posobiye [Methods of analysis of geobotanical materials: Textbook. Manual], Leningrad, Publishing house of Leningrad University, 1987, 192 p. (In Russian)
23. Nyland K.E. Shiklomanov N.I., Streletskiy D.A. et al. Longterm circumpolar active layer monitoring (CALM) program observations in Northern Alaskan tundra, Polar Geography, 2021, vol. 44, iss. 3, p. 167‒185, DOI: 10.1080/1088937X.2021.1988000.
24. Rantanen M., Karpechko A.Y., Lipponen A. et al. The Arctic has warmed nearly four times faster than the globe since 1979, Communications Earth & Environment, 2022, vol. 3, DOI: 10.1038/s43247-022-00498-3.
25. Rudy A.C., Lamoureux S.F., Treitz P. et al. Identifying permafrost slope disturbance using multi-temporal optical satellite images and change detection techniques, Cold Regions Science and Technology, 2013, vol. 88, p. 37‒49, DOI: 10.1016/j.coldregions.2012.12.008.
26. Stow D.A., Hope A., McGuire D. et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems, Remote sensing of environment, 2004, vol. 89, iss. 3, p. 281‒308, DOI: 10.1016/j.rse.2003.10.018.
27. Streletskiy D. A., Maslakov A., Grosse G. et al. Thawing permafrost is subsiding in the Northern Hemisphere-review and perspectives, Environmental Research Letters, 2024, vol. 20, no 1, Article ID: 013006, DOI: 10.1088/1748-9326/ada2ff.
28. Tyrtikov A.P. Vliyanie rastitel’nogo pokrova na promerzanie i protaivanie gruntov [Influence of vegetation cover on freezing and thawing of soils], Moscow, Moscow University Press, 1969, 192 p. (In Russian)
29. Valentini R., Zamolodchikov D., Reyer C. et al. Climate change in Russia – past, present and future, Russian forests and climate change. What science can tell us, European Forest Institute, 2020, vol. 11, p. 45‒52, DOI: 10.36333/wsctu11.
30. Vasil’chuk Yu.K., Budantseva N.A., Maslakov A.A. et al. Plastovye l’dy vnutrigruntovogo genezisa na vostochnom poberezh’e Chukotki: vozrast i izotopnyi sostav [Massive ice bodies of ground origin on the eastern coast of Chukotka: age and isotopic composition], Arktika: ekologiya i ekonomika, 2025, vol. 15, no. 1, p. 4‒16, DOI: 10.25283/2223-4594-2025-1-4-16. (In Russian)
31. Vasiliev A.A., Drozdov D.S., Gravis A.G. et al. Permafrost degradation in the western Russian Arctic, Environmental Research Letters, 2020, vol. 15, no. 4, DOI: 10.1088/1748-9326/ab6f12.
32. Vidina A.A. Metodicheskie ukazaniya po polevym krupnomasshtabnym landshaftnym issledovaniyam (Dlya tselei s.-kh. proizvodstva v sred. polose Russkoi ravniny) [Guidance on field large-scale landscape studies (for agricultural production in the middle of the Russian Plain)], Moscow, Moscow University Press, 1962, 120 p. (In Russian)
33. Yang Y., Wang X., Wang T. Permafrost degradation induces the abrupt changes of vegetation NDVI in the Northern Hemisphere, Earth’s Future, 2024, vol. 12, iss. 10, DOI: 10.1029/2023EF004309.
34. Yunatov A.A. [Types and content of geobotany studies], Polevaya geobotanika [Field geobotany], 1964, Leningrad, Nauka Publ., vol. 3, p. 9‒36. (In Russian)
35. Zhil’tsova E.L., Anisimov O.A. [Empirico-statistical modeling of vegetation zonation under climate change in Russia], Problemy ekologicheskogo modelirovaniya i monitoringa ekosistem [Problems of ecological modeling and ecosystem monitoring], Moscow, Planeta Publ., 2013, p. 360‒374. (In Russian)
36. Zhuchkova V.K., Rakovskaya E.M. Metody kompleksnykh fiziko-geograficheskikh issledovanii [Methods of complex physical-geographical investigations], Moscow, Akademiya Publ., 2004, 368 p. (In Russian)
Review
For citations:
Grishchenko M.Yu., Maslakov A.A., Grigoryan A.G., Aldoshin I.A. NDVI as an indicator of cryogenic processes and technogenesis dynamics on the Сhukotka peninsula. Lomonosov Geography Journal. 2025;(6):103-117. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.80.6.8
JATS XML





























