Preview

Lomonosov Geography Journal

Advanced search

Investigation of the summer heat island in Yakutsk based on thermal microsensor data

https://doi.org/10.55959/MSU0579-9414.5.80.5.9

Abstract

The paper describes the results of a microclimatic experiment to study the thermal structure of the city of Yakutsk applying an independent deployed network of TZONE thermal sensors. The entire city was covered with a measuring infrastructure consisting of 18 sensors for a two-month period in the second half of the summer 2024. The data obtained clearly indicate the formation of a summer temperature anomaly in Yakutsk, which can be classified as a “summer heat island”. Its intensity at night, which is a diagnostic sign of a heat island, reaches 2,5–3,6°С. The average heat island value for the entire summer period can be estimated at 1,3–1,6°С. There is also significant diversity in the daily variation of temperature inside the city and within the background zone, which is most likely due to different heating regime of the surface air. The principal cause is the differential arrival of direct solar radiation because the “background” areas are more open to the sun’s rays. 

About the Authors

P. I. Konstantinov
Lomonosov Moscow State University, Faculty of Geography, Department of Meteorology and Climatology
Russian Federation

P.I. Konstantinov - Associate Professor, PhD. in Geography



A. A. Semenova
Lomonosov Moscow State University, Faculty of Geography, Department of Meteorology and Climatology
Russian Federation

 A.A. Semenova - Post-graduate student



U. I. Antipina
A.M. Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences
Russian Federation

U.I. Antipina - Junior Scientifi c Researcher, post-graduate student



M. A. Timofeev
M.K. Ammosov North-Eastern Federal University
Russian Federation

M.A. Timofeev - Engineer-researcher



N. I. Tananaev
M.K. Ammosov North-Eastern Federal University
Russian Federation

N.I. Tananaev - Head of the Laboratory, Associate Professor, Ph.D. in Geography



References

1. AMAP. Arctic Monitoring and Assessment Programme climate change update 2019: An update to key findings of snow, water, ice and permafrost in the Arctic (SWIPA), Oslo, Norway, 12 p.

2. Asa P.S., Zemba A.A. Assessing temperature warming and cooling rates using simple statistical analysis: The case study of Jalingo metropolis, Journal of the Bulgarian Geographical Society, 2023, vol. 49, p. 43-51, DOI: 10.3897/jbgs.e110454.

3. Baklanov A., Burzynski J., Christen A. et al. The urban surface energy budget and mixing height in European cities: data, models and challenges for urban meteorology and air quality, Final Report of Working Group 2, 2004, 234 p.

4. Benz S., Bayer P., Goettsche F. et al. Linking surface urban heat islands with groundwater temperatures, Environmental science and technology, 2016, vol. 50, no. 1, p. 70–78, DOI: 10.1021/acs.est.5b03672.

5. Biskaborn B.K., Smith S.L., Noetzli J. et al. Permafrost is warming at a global scale, Nature communications, 2019, vol. 10, no. 1, p. 264, DOI: 10.1038/s41467-018-08240-4.

6. Bowling S., Benson C. Study of the subarctic heat island at Fairbanks, Alaska, Environmental Protection Agency, EPA-600/4-78-027, Washington, D.C., 1978, р. 150.

7. Davy R., Chen L., Hanna E. Arctic amplification metrics, ArXiv preprint arXiv:1810.03885, 2018, DOI: 10.48550/arXiv.1810.03885.

8. Esau I., Miles V. Warmer urban climates for development of green spaces in northern Siberian cities, Geography, Environment, Sustainability, 2016, vol. 9, no. 4, p. 48–62, DOI: 10.24057/2071-9388-2016-9-4-17-23.

9. Esau I., Miles V., Varentsov M. et al. Spatial structure and temporal variability of a surface urban heat island in cold continental climate, Theoretical and Applied Climatology, 2019, vol. 137, p. 2513–2528, DOI: 10.1007/s00704-018-02754-z.

10. Fan Y., Li Y., Yin S. Non-uniform ground-level wind patterns in a heat dome over a uniformly heated non-circular city, International Journal of Heat and Mass Transfer, 2018, vol. 124, p. 233 246, DOI: 10.1016/j.ijheatmasstransfer.2018.03.069.

11. Ganbat G., Han J.Y., Ryu Y.H. et al. Characteristics of the urban heat island in a high-altitude metropolitan city, Ulaanbaatar, Mongolia, Asia-Pacific Journal of Atmospheric Sciences, 2013, vol. 49, no. 4, p. 535–541, DOI: 10.1007/s13143-013-0047-5.

12. Harsch M.A., Hulme P.E., McGlone M.S. et al. Are treelines advancing? A global meta-analysis of treeline response to climate warming, Ecology letters, 2009, vol. 12, no. 10, p. 1040–1049, DOI: 10.1111/j.1461-0248.2009.01355.x.

13. Hinkel K.M., Nelson F.E., Klene A.E. et al. The urban heat island in winter at Barrow, Alaska, International Journal of Climatology, 2003, vol. 23, p. 1889, DOI: 10.1002/joc.971.

14. Hjort J., Karjalainen O., Aalto J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century, Nature communications, 2018, vol. 9, no. 1, p. 5147, DOI: 10.1038/s41467-018-07557-4.

15. Hjort J., Suomi J., Käyhkö J. Extreme urban-rural temperatures in the coastal city of Turku, Finland: Quantification and visualization based on a generalized additive model, Science of the Total Environment, 2016, vol. 569, p. 507– 517, DOI: 10.1016/j.scitotenv.2016.06.136.

16. Hubbart J., Link T., Campbell C. et al. Evaluation of a low-cost temperature measurement system for environmental applications, Hydrological Processes: an International Journal, 2005, vol. 19, no. 7, p. 1517–1523, DOI:10.1002/hyp.5861.

17. IPCC, Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK and New York, NY, USA, 2019.

18. Järvi L., Hannuniemi H., Hussein T. et al. The urban measurement station SMEAR III: Continuous monitoring of air pollution and surface-atmosphere interactions in Helsinki, Finland, Boreal environment research, 2009, vol. 14, p. 86–109.

19. Kinnard C., Zdanowicz C., Fisher D. et al. Reconstructed changes in Arctic Sea ice over the past 1, 450 years, Nature, 2011, vol. 479, no. 7374, p. 509–512, DOI: 10.1038/nature10581.

20. Konstantinov P., Baklanov A., Varentsov M. et al. Experimental urban heat island research of four biggest polar cities in Northern Hemisphere, European Geosciences Union General Assembly, 2014, vol. 16, p. 1–2.

21. Konstantinov P., Kukanova A. [Urban heat islands in the Russian Federation: the main characteristics and problems of studying], Sbornik tezisov “ENVIROMIS-2014” [Proceedings of the International Conference and Young Scientists School on Computational Information Technologies for Environmental Sciences: “ENVIROMIS-2014”], Tomsk TsNTI Publ., 2014, p. 162–164. (In Russian)

22. Konstantinov P., Varentsov M., Esau I. A high-density urban temperature network deployed in several cities of Eurasian Arctic, Environmental Research Letters, 2018, vol. 13, no. 7, p. 075007, DOI: 10.1088/1748-9326/aacb84.

23. Lappalainen H., Kerminen V., Petaja T. et al. Pan-Eurasian Experiment (PEEX): Towards holistic understanding of the feedbacks and interactions in the land-atmosphereocean-society continuum in the Northern Eurasian region, Atmospheric Chemistry and Physics Discussions, 2016, p. 1–107, DOI: 10.5194/acp-16-14421-2016.

24. Lokoshchenko M.A., Korneva I.A. Underground urban heat island below Moscow city, Urban Climate, 2015, vol. 13, p. 1–13, DOI: 10.1016/j.uclim.2015.04.002.

25. Magee N., Curtis J., Wendler G. The urban heat island effect at Fairbanks, Alaska, Theoretical and applied climatology, 1999, vol. 64, no. 1, p. 39–47, DOI: 10.1007/s007040050109.

26. Miles V., Esau I. Seasonal and spatial characteristics of Urban Heat Islands in Northern West Siberian cities, Remote sensing, 2017, vol. 9, no. 10, p. 989, DOI: 10.3390/rs9100989.

27. Mishra V., Ganguly A., Nijssen B. et al. Changes in observed climate extremes in global urban areas, Environmental Research Letters, 2015, vol. 10, no. 2, p. 024005, DOI 10.1088/1748-9326/10/2/024005.

28. Oke T. The energetic basis of the urban heat island, Quarterly journal of the Royal Meteorological Society, 1982, vol. 108, no. 455, p. 1–24, DOI: 10.1002/qj.49710845502.

29. Oke T., Mills G., Christen A. et al. Urban Climates. Cambridge University Press, 2017, р. 525, DOI: 10.1017/9781139016476.

30. Peng S., Piao S., Ciais P. et al. Surface urban heat island across 419 global big cities, Environmental science and technology, 2012, vol. 46, no. 2, p. 696–703, DOI: 10.1021/es2030438.

31. Piringer M., Joffre S., Baklanov A. et al. The surface energy balance and the mixing height in urban areas – activities and recommendations of COST-Action 715, BoundaryLayer Meteorology, 2007, vol. 124, no. 1, p. 3–24, DOI: 10.1007/s10546-007-9170-0, 2007.

32. Respublika Sakha (Yakutiya) v tsifrakh: Kratkii stat. sbornik, Territorial’nyi organ Federal’noi sluzhby gosudarstvennoi statistiki po Respublike Sakha (Yakutiya), Ya., 2025, 150 p. (In Russian)

33. Semenova A.A., Konstantinov, P.I., Varentsov, M.I. et al. Modeling the dynamics of comfort thermal conditions in Arctic cities under regional climate change, IOP Conference Series: Earth and Environmental Science, 2019, vol. 386, no. 1, p. 012017, DOI:10.1088/1755-1315/386/1/012017.

34. Shiklomanov N.I., Streletskiy D.A., Swales T.W. et al. Climate change and stability of urban infrastructure in Russian permafrost regions: prognostic assessment based on GCM climate projections, Geographical review, 2016, vol. 107, no. 1, p. 125–142, DOI: 10. 1111/gere.12214.

35. Shver Ts.A., Izyumenko S.A. Klimat Yakutska [Climate of Yakutsk], Leningrad, Gidrometeoizdat Publ., 1982, 246 p. (In Russian)

36. Sitch S., McGuire A., Kimball J. et al. Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modeling, Ecological applications, 2007, vol. 17, no. 1, p. 213–234, DOI: 10.1890/1051-0761(2007)017[0213:ATCBOC]2.0.CO;2.

37. Steinecke K. Urban climatological studies in the Reykjavık subarctic environment, Iceland, Atmospheric environment, 1999, 24–25, p. 4157–4162, DOI:10.1016/S1352-2310(99)00158-2.

38. Stewart I., Oke T. Local climate zones for urban temperature studies, Bulletin of the American Meteorological Society, 2012, vol. 93, no. 12, p. 1879–1900, DOI: 10.1175/BAMS-D-11-00019.1.

39. Streletskii D.A., Shiklomanov N.I., Grebenets V.I. Izmenenie nesushchei sposobnosti merzlykh gruntov v svyazi s potepleniem klimata na severe Zapadnoi Sibiri [Changes of the p[ermafrost bearing capacity under climate warming in Northwest Siberia], Kriosfera Zemli, 2012, vol. 16, no. 1, p. 22–32. (In Russian)

40. Struchkova G.P., Krupnova T.G., Rakova O.V. et al. Opredelenie teplovykh anomalii g. Yakutsk po rezul’tatam deshifrirovaniya sputnikovykh dannykh [Identification of thermal anomalies in Yakutsk using satellite data], Prirodnye resursy Arktiki i Subarktiki, 2023, vol. 28, no. 3, p. 415–424, DOI: 10.31242/2618-9712-2023-28-3-415-424. (In Russian)

41. Varentsov M. I. Konstantinov P.I., Samsonov T.E. et al. Izuchenie fenomena gorodskogo ostrova tepla v usloviyakh polyarnoi nochi s pomoshch’yu eksperimental’nykh izmerenii i distantsionnogo zondirovaniya na primere Noril’ska [Study of the urban heat island phenomenon in polar night conditions using experimental measurements and remote sensing using the example of Norilsk], Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, vol. 11, no. 4, p. 329–337. (In Russian)

42. Varentsov M., Konstantinov P., Baklanov A. et al. Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city, Atmospheric Chemistry and Physics, 2018, vol. 18, no. 23, p. 17573–17587, DOI: 10.5194/acp-18-17573-2018.

43. Voogt J., Oke T. Thermal remote sensing of urban climates, Remote sensing of environment, 2003, vol. 86, no. 3, p. 370–384, DOI:10.1016/S0034-4257(03)00079-8.

44. Wienert U., Kuttler W. The dependence of the urban heat island intensity on latitude – A statistical approach, Meteorologische Zeitschrift, 2005, vol. 14, no. 5, p. 677–686, DOI: 10.1127/0941-2948/2005/0069.

45. Wouters H., De Ridder K., Poelmans L. et al. Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region, Geophysical Research Letters, 2017, vol. 44, no. 17, p. 8997–9007, DOI: 10.1002/2017GL074889.

46. Zhao L., Lee X., Smith R. et al. Strong contributions of local background climate to urban heat islands, Nature, 2014, vol. 511, no. 7508, p. 216–219, DOI:10.1038/nature13462.

47. Zhou D., Xiao J., Bonafoni S. et al. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives, Remote Sensing, 2018, vol. 11, no. 1, p. 48, DOI: 10.3390/rs11010048.

48. Web source

49. Climate norms of Yakutsk, URL: https://meteoinfo.ru/climatcities (access date 01.11.2024).


Review

For citations:


Konstantinov P.I., Semenova A.A., Antipina U.I., Timofeev M.A., Tananaev N.I. Investigation of the summer heat island in Yakutsk based on thermal microsensor data. Lomonosov Geography Journal. 2025;(5):119-130. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.80.5.9

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)