Preview

Lomonosov Geography Journal

Advanced search

Present-day denudation of a small alpine catchment of the Donguz-Orun lake

https://doi.org/10.55959/MSU0579-9414.5.80.4.9

Abstract

Sediment dynamics in alpine catchments is highly variable both in time and space which should be considered in nature management. The study deals with investigation of the alpine catchment of the Donguz-Orun Lake, located on the northern slope of the Central Caucasus. We followed a morphodynamic approach to assess the denudation rate, which was supported by sediment delivery ratio assessment and two independent methods to verify the results. It was found that about 29,300 m³ of material is mobilized annually by the background exogenous geomorphologic processes in the catchment, corresponding to a local denudation rate of 2,2 mm/year. However, with an average sediment delivery ratio of 58%, only about 17,000 m3 reaches the catchment outlet, corresponding to the basin-wide denudation rate of 1,3 mm/year. Most of the sediment load in the lake basin is supplied by fluvial processes, predominantly gully erosion and sheet wash, as well as rock falls, glacial, and fluvio-glacial processes. Verification by independent methods, including estimation of sediment volume in the lake basin and the sediment fingerprinting technique, showed that used approach did overestimate the basin denudation volume by about 3000 m3 . The total denudation of the catchment under study exceeds the average value for the high mountain zone of the Alps.

About the Authors

M. I. Uspenskii
Lomonosov Moscow State University
Russian Federation

M.I. Uspenskii - Junior Scientifi c Researcher, Post-Graduate Student; Faculty of Geography, Laboratory of Geochemistry of Natural Waters; Makkaveev Research Laboratory of Soil Erosion and Channel Processes



S. V. Kharchenko
Lomonosov Moscow State University
Russian Federation

S.V. Kharchenko - Leading Scientifi c Researcher, Ph.D. in Geography; Faculty of Geography, Department of Geomorphology and Paleogeography



A. S. Tsyplenkov
Lomonosov Moscow State University
Russian Federation

A.S. Tsyplenkov - Scientifi c Researcher, Ph.D. in Geography; Faculty of Geography, Makkaveev Research Laboratory of Soil Erosion and Channel Processes



M. M. Ivanov
Lomonosov Moscow State University
Russian Federation

M.M. Ivanov - Senior Scientifi c Researcher; Ph.D. in Geography; Faculty of Geography, Makkaveev Research Laboratory of Soil Erosion and Channel Processes



V. N. Golosov
Lomonosov Moscow State University
Russian Federation

V.N. Golosov - Leading Scientifi c Researcher, D.Sc. in Geography; Faculty of Geography, Makkaveev Research Laboratory of Soil Erosion and Channel Processes



References

1. Borgese L., Federici S., Zacco A. et al. Metal fractionation in soils and assessment of environmental contamination in Vallecamonica, Italy, Environmental Science and Pollution Research, 2013, nо. 7(20), р. 5067–5075, DOI 10.1007/s11356-013-1473-8.

2. Borselli L., Cassi P., Torri D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment, Catena, 2008, nо. 3(75), р. 268–277, DOI: 10.1016/j.catena.2008.07.006.

3. Cavalli M., Trevisani S., Comiti F. et al. Geomorphometric assessment of spatial sediment connectivity in small Al pine catchments, Geomorphology, 2013, vol. 188, р. 31– 41, DOI: 10.1016/j.geomorph.2012.05.007.

4. Collins A.L., Pulley S., Foster I.D. et al. Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users, Journal of Environmental Management, 2017, vol. 194, p. 86–108, DOI: 10.1016/j.jenvman.2016.09.075.

5. Crema S., Cavalli M. SedInConnect: a stand-alone, free and open source tool for the assessment of sediment connectivity, Computers & Geosciences, 2018, vol. 111, p. 39– 45, DOI: 10.1016/j.cageo.2017.10.009.

6. Delunel R., Schlunegger F., Valla P.G. et al. Late-Pleistocene catchment-wide denudation patterns across the European Alps, Earth-Science Reviews, 2020, vol. 211, р. 103407, DOI: 10.1016/j.earscirev.2020.103407.

7. Gaspar L., Blake W.H., Smith H.G. et al. Testing the sensitivity of a multivariate mixing model using geochemical fingerprints with artificial mixtures, Geoderma, 2019, 337, р. 498–510, DOI: 10.1016/j.geoderma.2018.10.005.

8. Geologicheskaya karta: K-38-I, VII (Kislovodsk). Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii. Izdaniye vtoroye. Kavkazskaya seriya, masshtab: 1:200 000, seriya: Kavkazskaya [Geological map: K-38-I, VII (Kislovodsk), State Geological Map of the Russian Federation. Second edition, Caucasian series, scale: 1:200 000, series: Caucasian], 2004. (In Russian)

9. Gilbert A., Vincent C. Atmospheric temperature changes over the 20th century at very high elevations in the European Alps from englacial temperatures, Geophysical Research Letters, 2013, vol. 40, nо. 10, р. 2102–2108, DOI: 10.1002/grl.50401.

10. Godard V., Bourles D.L., Spinabella F. et al. Dominance of tectonics over climate in Himalayan denudation, Geology, 2014, nо. 3(42), р. 243–246, DOI: 10.1130/G35342.1.

11. Hartmann D.L., Tank A.M.G.K., Rusticucci M., et al. Observations: Atmosphere and surface, Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovern-mental Panel on Climate Change, 2013, 9781107057999, р. 159–254, DOI: 10.1017/CBO9781107415324.008.

12. Hinderer M. From gullies to mountain belts: A review of sediment budgets at various scales, Sedimentary Geology, 2012, vol. 280, р. 21–59, DOI: 10.1016/j.sedgeo.2012.03.009.

13. Kedich A., Kharchenko S., Tsyplenkov A. et al. Lateral mo raine failure in the valley of the Djankuat Catchment (Central Caucasus) and subsequent morphodynamics, Geomorphology, 2023, vol. 441, p. 108896, DOI: 10.1016/j.geomorph.2023.108896.

14. Kharchenko S.V., Golosov V.N., Tsyplenkov A.S. et al. Tempy sovremennoy denudatsii malogo vodosbora v srednegornom poyase Bol’shogo Kavkaza (na primere vodosbora Gitche-Gizhgit) [Rates of modern denudation of a small catchment in the middle mountain belt of the Greater Caucasus (case study of the Gitche-Gizhgit catchment)], Vestn. Mosk. Un-ta, Ser. 5, Geogr., 2023, nо. 3, р. 38–51, DOI: 10.55959/MSU0579-9414.5.78.3.4. (In Russian)

15. Lizaga I., Gaspar L., Blake W.H. et al. Fingerprinting changes of source apportionments from mixed land uses in stream sediments before and after an exceptional rain storm event, Geomorphology, 2019, 341, р. 216–229, DOI: 10.1016/j.geomorph.2019.05.015.

16. Messenzehl K., Hoffmann T., Dikau R. Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park – linking geomorphic field mapping with geomorphometric modelling, Geomorphology, 2014, 221, р. 215–229, DOI: 10.1016/j.geomorph.2014.05.033.

17. Ojha L., Ferrier K.L., Ojha T. Millennial-scale denudation rates in the Himalaya of Far Western Nepal, Earth Surface Dynamics, 2019, nо. 4(7), р. 969–987, DOI: 10.5194/es-urf-7-969-2019.

18. Pepin N., Bradley R.S., Diaz H.F. et al. Elevation-dependent warming in mountain regions of the world, Nature Climate Change, 2015, vol. 5(5), 424–430, https://doi.org/10.1038/nclimate2563.

19. Pulley S., Collins A.L. Tracing catchment fine sediment sources using the new SIFT (SedIment Fingerprinting Tool) open source software, Science of the Total Envi ronment, 2018, 635, р. 838–858, DOI: 10.1016/j.scito-tenv.2018.04.126.

20. Solomina O., Bushueva I., Dolgova E. et al. Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium, Global and Planetary Change, 2016, vol. 140, p. 28–58, DOI: 10.1016/j.gloplacha.2016.02.008.

21. Tashilova A.A., Ashabokov B.A., Kesheva L.A., Teunova N.V. Analysis of climate change in the Caucasus region: End of the 20th-beginning of the 21st century, Climate, 2019. no. 1(7), p. 11, DOI: 10.3390/cli7010011.

22. Tielidze L.G., Wheate R.D. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan), The Cryosphere, 2018, no. 1(12), p. 81–94, DOI: 10.5194/tc-12-81-2018.

23. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century, International Journal of Climatology, 2019, vol. 39, no. 12, p. 4703–4720, DOI: 10.1002/joc.6101.

24. Vigiak O., Borselli L., Newham L.T.H. et al. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio, Geomorphology. 2012, no. 1(138), p. 74–88, DOI: 10.1016/j.geomorph.2011.08.026.

25. Walling D.E., Webb B.W. Erosion and Sediment Yield: A Global Overview, Proceedings of the Exeter Symposium, 1996, р. 2–20.

26. Web source

27. Hack J.T., Seaton F.A., Nolan T.B. Studies of longitudinal stream profiles in Virginia and Maryland, Professional Paper, 1957, vol. 294, 95 p., URL: https://pubs.usgs.gov/pp/0294b/report.pdf.

28.


Review

For citations:


Uspenskii M.I., Kharchenko S.V., Tsyplenkov A.S., Ivanov M.M., Golosov V.N. Present-day denudation of a small alpine catchment of the Donguz-Orun lake. Lomonosov Geography Journal. 2025;(4):95-109. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.80.4.9

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)