Preview

Lomonosov Geography Journal

Advanced search

Bioindication of the state of the environment in the iron ore production area

https://doi.org/10.55959/MSU0579-9414.5.80.3.2

Abstract

The article analyzes the transformation of environmental components in the impact region of the JSC Karelian Pellet, Republic of Karelia. The content of metals (Mn, K, Sc, V, Sr, Fe, Cr, Co, Cu, Ni, Zn, Cd, Ba, Pb and Ti) in soils, bark of Pinus sylvestris and leaves of Betula pubescens was measured, and the changes in anatomical and morphological characteristics of indicator species were studied. The natural and territorial complexes in the Kostomuksha Nature Reserve were taken as a background. It is shown that the chemical composition of soils and plants depends on that of the underlying rocks, specific features of ore occurrence and the intensity of peat accumulation. When dusting from quarries, the soils receive K, Sr, Ba, Fe, Mn and Ti. Pollution from motor vehicles is an agent of increasing concentrations of Pb, Zn, Cu and Cd in soils and plants. Biotesting on Daphnia magna and Chlorella vulgaris have shown a low level of soil toxicity. Application of a set of bioindicating parameters revealing even minor environmental changes proved to be the most demonstrative one. Morphological deviations of plants under the influence of pollution increase by 1,5–4 times, the projective cover of epiphytic lichens decreases to zero compared with the background. The climatic signal in the radial growth of P. sylvestris is suppressed by anthropogenic impact within the plant area, the minimum and maximum growth indices decrease by 1,5–3 times relative to the background. The bioindication integral parameter (BIP) based on the Harrington’s desirability function indicates the absence of pollution in the reserve (BIP = 0,77–0,84), and “average” (BIP = 0,37–0,63) and “high” (BIP = 0,28–0,37) degree of environment transformation near production facilities within the plant territory. The outskirts of roads, production sites, and cuttings are overgrown with apochoric and ruderal species, such as Urtica dioica, Calamagrostis arundinacea, Chamaenerion angustifolium, Tussilago farfara, Picris hieracioides, etc. Invasive Ribes nigrum, Frangula alnus, Melandrium dubium, etc. occur widely within the reclaimed areas of old dumps of overburden grounds. The need for regular monitoring and control of the content of metals, especially Fe, Ni, V, Pb, Cu and Zn, in environmental components within the impact area of iron ore enterprises was noted.

About the Authors

M. G. Opekunova
Saint-Petersburg State University, Institute of Earth Sciences
Russian Federation

Professor, D.Sc. in Geography, Department of Geoecology



A. R. Nikulina
Saint-Petersburg State University, Institute of Earth Sciences
Russian Federation

Graduate student, Department of Geoecology



I. S Gaidysh
Joint Directorate of the Kostomuksha State Nature Reserve and the Kalevala National Park
Russian Federation

Deputy Director for research, environmental education and environmental monitoring, Ph.D. in Biology



I. V. Kushnir
Saint-Petersburg State University, Institute of Earth Sciences
Russian Federation

Graduate student, Department of Geoecology



V. Prokhorova
Saint-Petersburg State University, Institute of Earth Sciences
Russian Federation

Undergraduate student, Department of Geoecology



References

1. Agboola O., Babatunde D.E., Fayomi O.S.I. et al. A review on the impact of mining operation: Monitoring, assessment and management, Results in Engineering, 2020, vol. 8, DOI: 10.1016/j.rineng.2020.100181.

2. Bargal’i R. Biogeokhimiya nazemnykh rastenii [Biogeochemistry of terrestrial plants], Moscow, GEOS, 2005, 457 p. (In Russian)

3. Bayouli I.T., Bayouli H.T., Dell’Oca A. et al. Ecological indicators and bioindicator plant species for biomonitoring industrial pollution: Eco-based environmental assessment, Ecological Indicators, 2021, vol. 125, no. 6, DOI: 10.1016/j.ecolind.2021.107508.

4. Bioindikaciya zagryaznenij nazemnykh ekosistem [Bioindication of pollution of the terrestrial ecosystems], R. Schubert (еd.), Moscow, 1988, 350 p. (In Russian)

5. Bityutskii N.P. Mineral’noe pitanie rastenii: uchebnik [Mineral nutrition of plants: textbook], 2nd ed., St. Petersburg, Publ. House of St. Petersburg Univ., 2020, 540 p. (In Russian)

6. Capozzi F., Giordano S., Aboal J.R. et al. Best options for the exposure of traditional and innovative moss bags: A systematic evaluation in three European countries, Environmental Pollution, 2016, vol. 214, p. 362–373, DOI 10.1016/j.envpol.2016.04.043.

7. Dobrovol’skii V.V. Osnovy biogeokhimii, ucheb. dlya stud. vyssh. ucheb. zavedenii [Fundamentals of biogeochemistry, Textbook for students], Moscow, Akademiya Publ., 2003, 400 p. (In Russian)

8. Dzyuba O.F. Palinoindikatsiya kachestva okruzhayushchei sredy [Palinoindication of environmental quality], St. Petersburg, Nedra Publ., 2006, 197 p. (In Russian)

9. Edvardsson J., Rognvaldsson K., Helgadottir E.P. et al. A statistical model for the prediction of the number of sapwood rings in Scots pine (Pinus sylvestris L.), Den- drochronologia, 2022, vol. 74, no. 2, DOI: 10.1016/j.dendro.2022.125963.

10. Fares M.A. Yusoff Z., Masdar N.D. et al. Tree barks as bioindicator for organic and inorganic pollutants: a preliminary study, Jurnal Intelek, 2014, vol. 9(1), p. 16–22.

11. Fedorets N.G., Solodovnikov A.N. Vozdeistvie emissii Kostomukshskogo gorno-obogatitel’nogo kombinata na lesnye podstilki sosnyakov v severotaezhnoi podzone Karelii [Impact of the Kostomuksha Mining and Processing Plant emissions on the forest litters in pine forests of the Northern Taiga subzone of Karelia], Trudy KarNTs RAN, 2013, no. 6, p. 143–152. (In Russian)

12. Galakhina N.E. Otsenka vozdeistviya predpriyatii gornodobyvayushchei zhelezorudnoi promyshlennosti na vodnuyu sredu s uchetom prirodno-tekhnogennykh faktorov formirovaniya vod [Assessment of the impact of mining enterprises of the iron ore industry on the aquatic environment, taking into account natural and man-made factors of water formation], Dissertation for the degree of Candidate of Chemical Sciences, Petrozavodsk, 2016, 160 p. (In Russian)

13. Giljum S., Maus V., Kuschnig N. et al. A pantropical assessment of deforestation caused by industrial mining, In Proceedings of the National Academy of Scienses, 2022, vol. 119(38), 7 p. DOI: 10.1073/pnas.2118273119.

14. Hou S., Zheng N., Tang L. et al. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area, Environ Monit Assess, 2019, vol. 191, no. 10, p. 634, DOI: 10.1007/s10661-019-7793-5.

15. Kartashev A.G. Bioindikacionnye metody kontrolya okruzhayushchej sredy, ucheb. posobie [Bioindication methods of the environment monitoring, textbook], Moscow, Yurajt Publ., 2021, 138 p. (In Russian)

16. Katjutin P.N., Stavrova N.I., Gorshkov V.V. et al. Radial growth of trees differing in their vitality in the middleaged scots pine forests in the Kola Peninsula, Silva Fennica, 2020, vol. 54, no. 3, p. 1–10, DOI 10.14214/SF.10263.

17. Korobova E.M. Toxicity as a Biogeochemical Problem, Geochemistry International, 2020, vol. 58, no. 10, p. 1092– 1096, DOI: 10.1134/S0016702920100080.

18. Kosheleva N.E., Kasimov N.S., Sorokina O.I. et al. Geokhimiya landshaftov Ulan-Batora [Geochemistry of Ulaanbaatar landscapes], Izvestiya Rossiiskoi akademii nauk, Seriya geograficheskaya, 2013, no. 5, p. 109–124. (In Russian)

19. Li S., Wu J., Huo Y. et al. 2021. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China, Science of the Total Environment, vol. 752, no. 2, DOI: 10.1016/j.scitotenv.2020.141827.

20. Lyanguzova I.V. Tyazhelye metally v severotaezhnykh ehkosistemakh Rossii, Saarbrucken, LAP LAMBERT, 2016, 269 р.

21. Markert B. Plants as Biomonitors: Indicators for Heavy Metals in the Terrestrial Environment, VCH Publishers Ltd., 1993.

22. Metody fiziko-khimicheskogo analiza pochv i rastenii, metod. ukazaniya [Methods of physical-chemical analysis of soils and plants, methodical instructions], M.G. Opekunova et al., St. Petersburg, Izd-vo S.-Peterb. Un-ta, 2015, 86 p. (In Russian)

23. Minkina T.M., Varduni T.V., Mandzhieva S.S. et al. Indikaciya himicheskogo zagryazneniya- pochv i rastenij [Indication of chemical pollution of soil and plants], Rostov-naDonu, Pechatnaya-lavka Publ., 2015, 192 p. (In Russian)

24. Opekunov A.Y., Opekunova M.G., Kukushkin S.Y. et al. Mineralogical-Geochemical Characteristics of the Snow Cover in Areas with Mining and Ore-Processing, Geochemistry International, 2021, vol. 59, no. 7, p. 711–724, DOI: 10.1134/S0016702921060070.

25. Opekunov A.Yu., Opekunova M.G. Integral’naya otsenka zagryazneniya landshafta s ispol’zovaniem funktsii zhelatel’nosti Kharringtona [Total evaluation of landscape pollution using Harrington’s desirability function], Vestn. SPb. un-ta, Ser. Geologiya, Geografiya, 2014, no. 4, p. 101–113. (In Russian)

26. Opekunova M.G. Diagnostika tekhnogennoj transformacii landshaftov na osnove bioindikacii [Bioindication-based diagnostics of the tehnogenic transformation of landscapes], diss. … d-r geogr. Nauk, 25.00.23, SPb., 2013, 402 р. (In Russian)

27. Opekunova M.G., Gizetdinova M.Yu. Ispol’zovanie lishainikov v kachestve bioindikatorov zagryazneniya okruzhayushchei sredy [Using of lichens as bioindicators of environmental pollution], Vestn. SPb. un-ta, Ser. 7, Geologiya, Geografiya, 2014, no. 1, p. 79–94. (In Russian)

28. Opekunova M.G., Nikulina A.R., Smeshko I.V., Kirichenko V.S. Sravnitel’nyi analiz effektivnosti metodov bioindikatsii pri monitoringovykh issledovaniyakh sostoyaniya okruzhayushchei sredy v Sankt-Peterburge [Comparative analysis of the effectiveness of bioindication methods in monitoring environmental studies in St. Petersburg], Vestn. SPb. un-ta, Nauki o Zemle, 2023, vol. 68, no. 2, p. 331– 356, DOI: 10.21638/spbu07.2023.207. (In Russian)

29. Panteleeva Ya.G. Geokhimicheskie izmeneniya okruzhayushchei sredy v zone vliyaniya gornopromyshlennogo kompleksa OAO “Karel’skii okatysh” (g. Kostomuksha, Respublika Kareliya) [Geochemical changes of the environment in the zone of influence of the Karelian Okatysh mining complex (Kostomuksha, Republic of Karelia)], Extended Abstract of PhD Thesis in Geological and Mineral Sciences, St. Petersburg, 2009, 240 p. (In Russian)

30. Regiony i goroda Rossii: integral’naya otsenka ekologicheskogo sostoyaniya [Regions and cities of Russia: integrated assessment of the environmental condition], N.S. Kasimov et al., Moscow, IP Filimonov M.V. Publ., 2014, 560 p. (In Russian)

31. Rybicki J., Abrego N., Ovaskainen O. Habitat fragmentation and species diversity in competitive communities, Ecology letters, 2019, vol. 23, no. 3, p. 506–517, DOI: 10.1111/ele.13450.

32. Speer J.H. Fundamentals of Tree-Ring Research, Tucson, Arizona University of Arisona Press, 2010, 368 p.

33. Stavrova N.I., Gorshkov V.V., Katjutin P.N., Bakkal I.J. The structure of northern siberian spruce-scots pine forests at different stages of post-fire succession, Forests, 2020, vol. 11, no. 5, p. 558, DOI 10.3390/F11050558.

34. Terekhova V.A. Biotesting of Soil Ecotoxicity in Case of Chemical Contamination: Modern Approaches to Integration for Environmental Assessment (a Review), Eurasian Soil Science, 2022, vol. 55, no. 5, p. 601–612, DOI: 10.1134/S106422932205009X.

35. Thakur M., Bhardwaj S., Kumar V., Rodrigo-Comino J. Lichens as effective bioindicators for monitoring environmental changes: A comprehensive review, Total Environment Advances, 2024, vol. 9, DOI: 10.1016/j.teadva.2023.200085.

36. Tishkov A.A., Belonovskaya E.A., Krenke A.N. et al. Izmeneniya biologicheskoj produktivnosti nazemnykh ehkosistem rossijskoj Arktiki v XXI v. [Changes in the biological productivity of terrestrial ecosystems of the Russian Arctic in the 21st century], Arktika: ekologiya i ekonomika, 2021, vol. 11, no. 1, p. 30–41, DOI 10.25283/2223-4594-2021-1-30-41. (In Russian)

37. Trebovaniya k geokhimicheskoi osnove gosudarstvennoi geologicheskoi karty Rossiiskoi Federatsii masshtaba 1 : 1 000 000 (novaya redaktsiya) [Requirements for the geochemical basis of the state geological map of the Russian Federation on a scale of 1 : 1 000 000 (new edition)], Moscow, 2005, 28 p. (In Russian)

38. Urosevic M.A., Lazo P., Stafilov T. et al. Active biomonitoring of potentially toxic elements in urban air by two distinct moss species and two analytical techniques: a pan-Southeastern European study, Air Qual, Atmos, Health, 2023, vol. 16, p. 595–612, DOI 10.1007/s11869-022-01291-z.

39. Vaganov E.A., Kruglov V.B., Vasil’ev V.G. Dendrokhronologiya: uchebnoe posobie [Dendrochronology: textbook], Krasnoyarsk, Siberian Federal Univ. Publ., 2008, 120 p. (In Russian)

40. Yarmishko V.T., Gorshkov V.V., Lyanguzova I.V., Bakkal I.Yu. Ehkologicheskij monitoring lesnykh ehkosistem Kol’skogo poluostrova v usloviyakh aehrotekhnogennogo zagryazneniya, Regional’naya ekologiya, 2011, no. 1–2(31), р. 21–29. (In Russian)

41. Zamotaev I.V., Ivanov I.V., Mikheev P.V. et al. Transformation and contamination of soils in iron ore mining areas (a review), Eurasian Soil Science, 2017, vol. 50, no. 3, p. 359–372, DOI: 10.1134/S1064229317030127.

42. Zdorov’e sredy: metodika otsenki [Environmental health: assessment methodology], V.M. Zakharov et al., Moscow, Tsentr ekologicheskoi politiki Rossii Publ., 2000, 68 p. (In Russian)

43. Zvezdanovic J., Petrovic S., Lazarevic A. Nickel(II) interactions with chlorophylls in solution: impact to degradation induced by UV-irradiation, Chemia Naissensis, 2023, vol. 5, no. 2, p. 1–17, DOI: 10.46793/ChemN5.2.01Z.


Review

For citations:


Opekunova M.G., Nikulina A.R., Gaidysh I.S., Kushnir I.V., Prokhorova V. Bioindication of the state of the environment in the iron ore production area. Lomonosov Geography Journal. 2025;(3):15-31. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.80.3.2

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)