Evaluation of methane emissions from the Ivankovskoye reservoir
https://doi.org/10.55959/MSU0579-9414.5.80.3.1
Abstract
The article summarizes materials from a multi-method research of the Ivankovo Reservoir carried out in 2022−2024 to study seasonal changes of methane concentration in water and its emission from the surface. The survey included both methane flux measurement at the water − atmosphere boundary, with due consideration of its spatial variability, and measurement of methane emissions from the bottom sediments.
The measurements were carried out by a chamber method (floating and bottom). The samples were processed using the Chromatek-Crystall 5000.2 chromatograph. Sampling locations were chosen taking in account the morphological structure of the reservoir, the type of bottom sediments, and the depth intervals. The measurements have shown that the values of methane flux on longitudinal and transverse sections could differ by two orders of magnitude. Its lowest values are within the areas with sandy bottom. The highest value of methane flux is in the area with significant anthropogenic load, i. e. from the inflow of the Shoshinsky reach to the Ploski village. According to the classification based on the water exchange coefficient, the Ivankovo Reservoir belongs to the group of flow-through reservoirs with seasonal flow regulation; however under certain weather conditions the oxygen deficiency areas appear in the reservoir. During these periods, the methane flux from such areas becomes comparable with that from the low-flow water bodies. Therefore, the summer decrease in flowage and more frequent heat waves are unfavorable factors increasing the methane emission. Low-water periods when the water level decreases relative to the FSL during the navigation period are also unfavorable because of the increase in methane flux.
The obtained values of methane flux were compared with published data, and significant differences were found for the spring period. A methodology for estimating methane emission from a reservoir is proposed, taking into account the factors that determine its flux. Seasonal changes in emission are described, and the increased frequency of measurements and the need to measure methane flux over different types of macrophytes are argued.
About the Authors
M. G. GrechushnikovaRussian Federation
Senior Scientifi c Researcher, Ph.D. in Geography, Faculty of Geography, Department of Land Hydrology
V. S. Kazantsev
Russian Federation
Senior Scientifi c Researcher, Ph.D. in Biology, RAS, Laboratory of Greenhouse Gases
References
1. Bastviken D., Cole J., Pace M., Tranvik L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biochemical Cycles, 2004, vol. 18, p. 1–12, DOI: 10.1029/2004GB002238.
2. Bastviken D., Santoro A., Marotta H. Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling, Environmental Science and Technology, 2010, vol. 44, no. 14, p. 5450–5455, DOI: 10.1021/es1005048.
3. Chanton J.P., Whiting G.J., Happell J.D., Gerard G. Contrasting rates and diurnal patterns of methane emissions from emergent aquatic macrophytes. Aquatic Botany, 1993, vol. 46, p. 111–128.
4. Deemer B., Harrison A., Li S. et al. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis, Springer. BioScience, 2016, vol. 66, no. 11, p. 949–964.
5. Ekzertsev V.A., Lisitsyna L.I., Dovbnya I.V. Suktsessii gidrofil’noi rastitel’nosti v litorali Ivan’kovskogo vodokhranilishcha [Successions of hydrophilic vegetation in the littoral zone of the Ivankovo Reservoir], Tr. IBVV RAN, 1990, vol. 59(62), p. 120–132. (In Russian)
6. Fedorov M.P., Elistratov V.V., Maslikov V.I. et al. Reservoir Greenhouse Gas Emissions at Russian HPP, Power Technology and Engineering, 2015, vol. 49, no. 1, p. 33–36, DOI: 10.1007/s10749-015-0569-3.
7. Gidrometeorologicheskii rezhim ozer i vodokhranilishch SSSR. Vodokhranilishcha Verkhnei Volgi [Hydrometeorological Regime of Lakes and Reservoirs in the USSR. Upper Volga Reservoirs], Z.A. Vikulinoi, V.A. Znamenskogo (eds.), Leningrad, Nauka Publ., 1973, 158 p. (In Russian)
8. GOST 31957–2012. Voda. Metody opredeleniya shchelochnosti i massovoi kontsentratsii karbonatov i gidrokarbonatov [State Standart 31957–2012. Water. Methods for determination of alkalinity and mass concentration of carbonates and hydrocarbonates], Moscow, Standartinform Publ., 2013, 25 p. (In Russian)
9. Grechushnikova M.G., Lomova D.V., Lomov V.A et al. Prostranstvenno-vremennye razlichiya gidroekologicheskikh kharakteristik i emissii metana Ivan’kovskogo vodokhranilishcha [Space and time variations of hydroenvironmental characteristics of the Ivankovo Reservoir in years with different weather conditions], Vodnye resursy, 2023, vol. 50, no. 1, p. 81–89, DOI: 10.31857/S0321059623010078. (In Russian)
10. Grechushnikova M.G., Repina I.A., Frolova N.L. et al. Soderzhanie i potoki metana v Volzhskikh vodokhrnilishchah. [Methane Concentration and Fluxes in Volga River Reservoirs], Izvestiya RAN, Ser. Geogr., 2023, no. 87(6), p. 899–913, DOI: 10.31857/S2587556623060080. (In Russian)
11. Grechushnikova M.G., Repina I.A., Lomova D.V., Lomov V.A. Rezul’taty naturnykh izmerenii potoka metana s raznotipnykh vodokhranilishch [The results of field measurements of methane flux from various reservoirs], Izv. Irkutskogo gosudarstvennogo universiteta, Ser. Nauki o zemle, 2022, vol. 40, p. 3–13, DOI: 10.26516/2073-3402.2022.40.3. (In Russian)
12. Grechushnikova M.G., Repina I.A., Stepanenko V.M. et al. Methane emission from the surface of the Mozhaisk valley-type Reservoir, Geography and Natural Resources, 2019, vol. 40, p. 247–255, DOI:10.1134/S1875372819030077.
13. Grigor’eva I.L., Chekmareva E.A. Vliyanie rekreatsionnogo vodopol’zovaniya na kachestvo vody Ivan’kovskogo vodokhranilishcha [The influence of the recreation on water quality of the Ivankovo Reservoir], Izvestiya RAN, Ser. Ge ogr., 2013, no. 3, p. 63–70, DOI: 10.15356/0373-2444-2013-3-63-70. (In Russian)
14. Gruzdeva L.P., Suslov S.V., Gruzdev V.S., Khrustaleva M.A. Problemy zarastaniya vodokhranilishch v basseine volzhskoi i moskvoretskoi vodokhozyaistvennykh sistem [Problems of overgrowing reservoirs in the catchment basin of the Volga and Moskvoretskaya hydrotechnical systems], Vestn. Mezhd. AN., Russkaya sektsiya, 2017, no. 1, p. 97–100. (In Russian)
15. Ivan’kovskoe vodokhranilishche: Sovremennoe sostoyanie i problemy okhrany [Ivankovo Reservoir: Current state and problems of protection], Moscow, Nauka Publ., 2000, 344 p. (In Russian)
16. Johnson M.S., Matthews E., Bastviken D. et al. Spatiotemporal methane emission from global reservoirs, Journal of Geophysical Research, Biogeosciences, 2021, vol. 126(8), p. 1–19, DOI: 10.1029/2021JG006305.
17. Kazmiruk V.D., Kazmiruk T.N., Brekhovskikh V.F. Zarastayushchie vodotoki i vodoemy: Dinamicheskie protsessy formirovaniya donnykh otlozhenii [Overgrowing streams and water bodies: Dynamic processes of formation of bottom sediments], Moscow, Nauka Publ., 2004, 310 p. (In Russian)
18. Kettunen A. Modelling of microscale variations in methane fluxes, diss. for the deg. of Dr. of Tech. Helsinki, 2002, 40 p.
19. Kirpichev I.A., Grigor’eva I.L. Issledovanie vliyaniya kottedzhnoi zastroiki beregovoi zony Ivan’kovskogo vodokhranilishcha na kachestvo vody vodoema [Study of the influence of cottage development of the coastal zone of the Ivankovo Reservoir on the water quality of the water body], Vestn. Mezhdunarodnogo universiteta prirody, obshchestva i cheloveka “Dubna”, 2018, no. 1(38), p. 19–25. (In Russian)
20. Malakhova T.V., Budnikov A.A., Ivanova I.N., Murashova A.I. Methane fluid discharge measurements by the trap method in Laspi Bay (Black Sea), Moscow University Physics Bulletin, 2020, vol. 75, no. 6, p. 705–711, DOI: 10.3103/S0027134920060132.
21. Malakhova T.V., Budnikov A.A., Ivanova I.N., Murashova A.I. Sezonnie i sutochnie zakonomernosti soderzhaniya i potokov metana v estuarii reki Chernoi (Krim) [Seasonal and dayly patterns of methane content and emission in the estuary of Chernaya river (Crimea)], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2022, no. 6, p. 27– 39. (In Russian)
22. Marinho C.C., Cleber P.-S., Edé lti F.A. et al. Emergent Macrophytes Alter the Sediment Composition in a Small, Shallow Subtropical Lake: Implications for Methane Emission, American Journal of Plant Sciences, 2015, no. 6, р. 315–322, DOI: 10.4236/ajps.2015.62036.
23. Martinsen K.T., Kragh T., Sand-Jensen K. Technical note: A simple ans cost-efficient automated floating chamber for continuous measurements of carbon dioxide gas flux on lakes, Biogeosciences, 2018, vol. 15, p. 5565–5573, DOI: 10.5194/bg-15-5565-2018.
24. Nikanorov Yu.I. Ivan’kovskoe vodokhranilishche [Ivankovo Reservoir], Izv. GosNIORKh, 1975, vol. 102, p. 5–25. (In Russian)
25. Podgrajsek E., Sahlée E., Rutgersson А. Diurnal cycle of lake methane flux, J. Geophys. Res. Biogeosci, 2014, 119, 236–248, DOI:10.1002/2013JG002327.
26. Prikaz Rosvodresursov ot 31.05.2019 Nо. 125 “Ob utverzhdenii Pravil ispol’zovaniya vodnikh resursov Ivan’kovskogo vodokhranilishcha na r. Volge” [Rosvodresurs order dated 31.05.2019 Nо 125 “On approval of the Rules for the use of water resources of the Ivankovo reservoir on the Volga River”], 2019. (In Russian)
27. Repina I.A., Terskii P.N., Gorin S.L. et al. Field measurements of methane emission at largest reservoirs in Russia in 2021. The start of large-scale studies, Water Resources, 2022, vol. 49, p. 1003–1008, DOI: 10.1134/S0097807822060148.
28. Rosentreter J., Borges A., Deemer B. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources, Nature Geoscience, 2021, no. 14, р. 1–6, DOI: 10.1038/s41561-021-00715-2.
29. Shnirev N.A. Rezhimnyye nablyudeniya i otsenka gazoobmena na granitse pochvy i atmosfery (na primere potokov metana statsionara sredne-tayezhnoy zony Zapadnoy Sibiri “Mukhrino”) [Regular observations and assessment of gas exchange at the boundary of soil and atmosphere (using the example of methane flows at the Mukhrino station in the middle taiga zone of Western Siberia)], Extended Abstracts of Ph.D. Thesis in Biology, Moscow, 2016, 25 p. (In Russian)
30. Sieczko A.K., Duc N.T., Schenk J. et al. Diel variability of methane emissions from lakes, Proceedings of the National Academy of Sciences, 2002, vol. 117, p. 21488– 21494, DOI: 10.1073/pnas.2006024117.
31. Spravochnik vodokhranilishch SSSR: v 2 ch., сhast’ 1, Vodokhranilishcha ob”emom 10 mln m3 i bolee [Directory of the USSR reservoirs, in 2 parts, рart 1. Reservoirs with a volume of 10 million m3 or more], Moscow, Soyuzvodproekt Publ., 1988, 323 p. (In Russian)
32. Straskraba M., Tundisi J.G. Guidelines of lake management, vol. 9. Reservoir Water Quality Management, Japan, Int. Lake environment Committee (ILEC), 1999, 229 p.
33. Vinberg G.G. Pervichnaya produktsiya vodoemov [Primary production of water bodies], Minsk, the Academy of Sciences of the Belarusian SSR Publ., 1960, 329 p. (In Russian)
34. Whiting G.J., Chanton J.P. Control of the Diurnal Pattern of Methane Emission from Emergent Aquatic Macrophytes by Gas Transport Mechanisms, Aquatic Botany, 1996, 54, p. 237–253, DOI: 10.1016/0304-3770(96)01048-0.
35. Zakonnov V.V., Grigor’eva I.L., Zakonnova A.V. Prostranstvenno-vremennaya transformatsiya gruntovogo kompleksa vodokhranilishch Volgi [Spatiotemporal transformation of the Volga reservoir ground complex], Vodnoe khozyaistvo Rossii, 2018, no. 3, p. 35–48. (In Russian)
36. Ziminova N.A., Zakonnov V.V. [Balances of biogenic elements in the Ivankovo Reservoir], Ekologicheskie issledovaniya vodoemov Volgo-Baltiiskoi i Severo-Dvinskoi vodnykh system [Ecological studies of water bodies of the Volga-Baltic and North-Dvina water systems], Leningrad, Nauka Publ., 1982, p. 239–258. (In Russian)
37. UNESCO/IHA Greenhouse-Gas Measurement Guidelines forFresh Water Reservoirs, UNESCO/IHA Research Project, 2010, URL: http://www.hydropower.org/iha/development/ghg/guidelines.html (date of access 31.10.2024).
38.
Review
For citations:
Grechushnikova M.G., Kazantsev V.S. Evaluation of methane emissions from the Ivankovskoye reservoir. Lomonosov Geography Journal. 2025;(3):3-14. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.80.3.1