Pockmarks morphology at the Barents sea shelf and its determining factors
https://doi.org/10.55959/MSU0579-9414.5.80.2.8
Abstract
Based on the results of complex geological and geophysical works carried out during the 38th, 52nd and 56th cruises of the R/V “Akademik Nikolaj Strakhov” and the 51st cruise of the R/V “Akademik Boris Petrov”, the fluidogenic relief was studied in detail at five key polygons in the southern and northeastern parts of the Barents Sea shelf. Digital elevation models of sea bottom obtained as a result of multibeam bathymetric survey allowed identifying of 2218 pockmarks. Their diameter varies from the first dozens of meters to 250 m, and the depth from 0,2 to 7,8 m. The morphometric analysis of these landforms provided for studying the relationship between the area, depth and shape of the pockmarks cross-sectional profile and physical geographic conditions (tectonic structure, lithology of Quaternary sediments, background topography, hydrological conditions). The distribution of pockmarks and other manifestations of degassing is traceable associated with the fault network. It acts as a pathway for fluid uplift from the gas-saturated sediments of predominantly Mesozoic age to the surface, which proves the deep origin of fluids. The tectonic structure of the area is also reflected in the mutual location of pockmarks within the polygons: the areas of increased density of landforms are near fault zones and in depressions, which are probably of tectonic origin. It was found that the morphology of pockmarks is primarily determined by the lithology of the Quaternary sediments. Large landforms with a more gentle profile are more common in the areas with sandy loams and sands. Small landforms with a V-shaped cross-sectional profile are within the areas with denser clay sediments. It was suggested that the deepest pockmarks occur in the areas covered by glaciers in the recent past. It may be related to active degassing of sediments after removal of the glacial load. Modern exogenous subaquatic processes have a significant influence on the change of pockmark morphology. The slope processes make the cross-sectional profile of pockmarks more complex, i. e. asymmetric and micro-stepping, while the influence of bottom currents leads to landforms elongation.
Keywords
About the Authors
A. P. DenisovaRussian Federation
A.P. Denisova - Junior Scientifi c Researcher
Laboratory of Geomorphology and Tectonics of the Ocean Bottom
E. A. Eremenko
Russian Federation
E.A. Eremenko – Associate professor, Ph.D. in Geography
Laboratory of Geomorphology and Tectonics of the Ocean Bottom; Faculty of Geography, Department of Geomorphology and Paleogeography
E. A. Moroz
Russian Federation
E.A. Moroz - Senior Scientific Researcher, Ph.D. in Geology and Mineralogy
Laboratory of Geomorphology and Tectonics of the Ocean Bottom
A. V. Kohan
Russian Federation
A.V. Kohan - Junior Scientific Researcher, Ph.D. in Geology and Mineralogy
Laboratory of Geomorphology and Tectonics of the Ocean Bottom
E. A. Suhih
Russian Federation
E.A. Suhih - Scientifi c Researcher
Laboratory of Heat and Mass Transfer
R. A. Ananiev
Russian Federation
R.A. Ananiev - Senior Scientifi c Researcher
Seismostratigraphy Laboratory
S. Yu. Sokolov
Russian Federation
S.Yu. Sokolov - Chief Scientifi c Researcher, D.Sc. in Geology and Mineralogy
Laboratory of Geomorphology and Tectonics of the Ocean Bottom
References
1. Andrews B., Brothers L., Barnhardt W. Automated feature extraction and spatial organization of seafloor pockmarks, Belfast Bay, Maine, USA, Geomorphology, 2010, vol. 124, p. 55–64, DOI: 10.1016/j.geomorph.2010.08.009.
2. Artyushkov E.V., Baluev A.S., Bogatskii V.I. et al. Shel’fovye osadochnye basseiny Rossiiskoi Arktiki. Geologiya, geoekologiya, mineral’no-syr’evoi potentsial [Shelf sedimentary basins of the Russian Arctic. Geology, geoecology, mineral resource potential], Murmansk, St Petersburg, Renome Publ., 2020, 544 p. (In Russian)
3. Batchelor C., Dowdeswell J., Ottesen D. Submarine glacial landforms, Submarine Geomorfology, Springer Geology Publ., 2018, p. 207–234.
4. Blasco S., Bennett R., Brent T. et al. 2010 State of Knowledge: Beaufort Sea seabed geohazards associated with offshore hydrocarbon development, Geological Survey of Canada, Open File 6989, 2013, 340 p., DOI: 10.4095/292616.
5. Bogoyavlenskii V.I. Ugroza katastroficheskikh vybrosov gaza iz kriolitozony Arktiki. Voronki Yamala i Taimyra [Threat of catastrophic gas emissions from the Arctic cryolithozone. Yamal and Taimyr funnels], Burenie i neft’, 2014, no. 9, p. 13–18. (In Russian)
6. Chand S., Thorsnes T., Rise L. et al. Multiple episodes of fluid flow in the SW Barents Sea (Loppa High) evidenced by gas flares, pockmarks and gas hydrate accumulation, Earth and Planetary Science Letters, 2012, vol. 331–332, p. 305–314, DOI: 10.1016/j.epsl.2012.03.021.
7. Gusev E.A., Kostin D.A. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 1 000 000 (tret’e pokolenie), Severo-Karsko-Barentsevomorskaya seriya, List R-39–40, Karta pliotsen-chetvertichnykh obrazovanii [State Geological Map of the Russian Federation at the scale of 1:1,000,000 (third generation), North Kara Barents Sea Series, Sheet R-39–40, Map of Pliocene-Quaternary formations], St Petersburg, Kartograficheskaya fabrika VSEGEI Publ., 2014. (In Russian)
8. Gusev E.A., Kostin D.A., Rekant P.V. Problema genezisa chetvertichnykh obrazovanii Barentsevo-Karskogo shel’fa (po materialam Gosudarstvennoi geologicheskoi karty Rossiiskoi Federatsii masshtaba 1:1 000 000) [The problem of genesis of Quaternary formations of the Barents-Kara shelf (based on the materials of the State Geological Map of the Russian Federation at the scale of 1:1,000,000)], Otechestvennaya geologiya, 2012, no. 2, p. 84–89. (In Russian)
9. Judd A., Hovland M. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment, Cambridge University Press, 2007, 492 p.
10. Khlebnikova P.A., Belen’kii V.Ya., Garzanov G.E. et al. Geologicheskoe stroenie i perspektivy neftegazonosnosti vostochnogo borta Severo-Barentsevomorskoi vpadiny [Geological structure and oil and gas potential of the eastern edge of the North Barents Sea Basin], Razvedka i okhrana nedr, 2009, no. 4, p. 13–21. (In Russian)
11. King L., MacLean B. Pockmarks on the Scotian Shelf, Geological Society of America Bulletin, 1970, p. 3141–3148, DOI: 10.1130/0016-7606(1970)81[3141:POTSS]2.0.CO;2.
12. Kizyakov A.I., Sonyushkin A.V., Leibman M.O. et al. Geomorphological conditions of the gas-emission crater and its dynamics in central Yamal, Earth’s Cryosphere, 2015, vol. XIX, no. 2, p. 15–25.
13. Kokhan A.V., Eremenko E.A., Moroz E.A. et al. Flyuidogennyi rel’ef na shel’fakh morei Arktiki [Fluidogenic landforms on the Arctic shelves], Vestn. Mosk. Un-ta, Ser. 5, Geogr., 2024, no. 2, p. 91–107, DOI: 10.55959/MSU0579-9414.5.79.2.8. (In Russian)
14. Kokhan A.V., Moroz E.A., Eremenko E.A. et al. Flyuidogennyi rel’ef raionov rasprostraneniya mnogoletnei merzloty na shel’fe Pechorskogo i Karskogo morei [Fluidogenic landforms within the permafrost zones on the shelf of the Pechora and Kara Seas], Vestn. Mosk. Un-ta, Ser. 5, Geogr., 2023, vol. 78, no. 3, p. 104–124, DOI: 10.55959/MSU0579-9414.5.78.3.9. (In Russian)
15. Kostin D.A., Orgo V.V. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 1 000 000 (tret’e pokolenie), Severo-Karsko-Barentsevomorskaya seriya, List T-41–44, Karta chetvertichnykh obrazovanii [State Geological Map of the Russian Federation at the scale of 1:1,000,000 (third generation), North Kara-Barents Sea Series, Sheet T-41–44, Map of Quaternary Formations], St Petersburg, Kartograficheskaya fabrika VSEGEI Publ., 2013. (In Russian)
16. Kostin D.A., Tarasov G.A. [Quaternary sedimentary cover of the Barents-Kara basin], Geologiya i geoekologiya kontinental’nykh okrain Evrazii, vyp. 3 [Geology and geoecology of the continental outskirts of Eurasia, iss. 3], Moscow, GEOS Publ., 2011, p. 107–130. (In Russian)
17. Logvina E.A., Matveeva T.V., Gladysh V.A. et al. Kompleksnye issledovaniya pokmarkov na Chukotskom plato [Complex studies of pockmarks on the Chukchi Plateau], Problemy Arktiki i Antarktiki, 2011, no. 2(88), p. 45–54. (In Russian)
18. Mironyuk S.G., Roslyakov A.G. Tipy, aktivnost’ i zakonomernosti rasprostraneniya pokmarok v arkticheskikh moryakh (Types, activity and distribution patterns of pockmarks in the Arctic seas), Sbornik tezisov VII Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Morskie issledovaniya i obrazovanie (MARESEDU-2018)”, 2019, vol. 2, p. 70–76. (In Russian)
19. Moroz E.A., Zaraiskaya Yu.A., Sukhikh E.A. et al. Rel’ef i stroenie verkhnei chasti osadochnogo chekhla v raione svoda Fedynskogo po akusticheskim dannym [Relief and structure of the upper part of sedimentary cover in the area of the Fe dynsky rise according to acoustic data], Vestn. Mosk. Un-ta, Ser. 5, Geogr., 2020, no. 2, p. 82–91. (In Russian)
20. Nikiforov S.L., Sorokhtin N.O., Ananiev R.A. et al. Investigations of the Western Arctic Shelf of Russia during the Cruise 56 of the R/V Akademik Nikolaj Strakhov, Oceanology, 2024, vol. 64(5), р. 737–739, DOI: 10.1134/S0001437024700413.
21. Nikiforov S.L., Sorokhtin N.O., Dmitrevskiy N.N. et al. Researches in cruise 38 of the R/V Akademik Nikolaj Strakhov in the Barents Sea, Oceanology, 2019, vol. 59, no. 5, p. 801–802, DOI: 10.31857/S0030-1574595885-887.
22. Orlov A.I. Veroyatnostno-statisticheskie modeli korrelyatsii i regressii [Probabilistic and statistical models of correlation and regression], Nauchnyi zhurnal KubGAU, 2020, no. 160(06), p. 1–33. (In Russian)
23. Penedyuk E.V. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 :1 000 000 (tret’e pokolenie), Severo-Karsko-Barentsevomorskaya seriya, List T-41–44, Litologicheskaya karta poverkhnosti dna akvatorii [State Geological Map of the Russian Federation at a scale of 1:1,000,000 (third generation), North Kara-Barents Sea Series, Sheet T-41–44, Lithological map of the bottom surface of the water area], St Peters burg, Kartograficheskaya fabrika VSEGEI Publ., 2013. (In Russian)
24. Radchenko M.S. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 1 000 000 (tret’e pokolenie), Severo-Karsko-Barentsevomorskaya seriya, List R-39, 40, Litologicheskaya karta poverkhnosti dna akvatorii [State geological map of the Russian Federation at a scale of 1:1,000,000 (third generation), North Kara-Barents Sea series. Sheet R-39, 40, Lithological map of the bottom surface of the water area], St Petersburg, Kartogra ficheskaya fabrika VSEGEI Publ., 2014. (In Russian)
25. Rise L., Bellec V., Chand S et al. Pockmarks in the south-western Barents Sea and Finnmark fjords, Norwegian Journal of Geology, 2014, vol. 94, p. 263–282.
26. Rokos S.I. Gazonasyshchennye otlozheniya verkhnei chasti razreza Barentsevo-Karskogo shel’fa [Gas-saturated deposits of the upper part of the Barents-Kara shelf section], Abstract, Ph.D. in Geography, 2009, 42 p. (In Russian)
27. Rybak E.N., Stupina L.V. Pokmarki Chernogo morya [Pockmarks of the Black Sea], Geologіya і korisnі kopalini Svіtovogo okeanu, 2019, vol. 15, no. 2, p. 16–34. (In Russian)
28. Shipilov E.V., Vernikovskii V.A. Stroenie oblasti sochleneniya Sval’bardskoi i Karskoi plit i geodinamicheskie obstanovki ee formirovaniya [The Svalbard and Kara plates junction: structure and geodynamic history], Geologiya i geofizika, 2010, vol. 51, no. 1, р. 75–92. (In Russian)
29. Shkarubo S.I., Shipilov E.V. Tektonika Zapadno-Arkticheskoi platformy [Tectonics of the West Arctic Platform], Razvedka i okhrana nedr, 2007, no. 9, p. 32–47. (In Russian)
30. Shnyukov E.F., Topachevskii I.V. Gazovye sipy mirovogo okeana [Gas seeps of the World Ocean], Geologіya regіonіv, 2019, no. 2(15), p. 3–15. (In Russian)
31. Sokolov S.Yu., Moroz E.A., Agranov G.D. et al. Manifestations of degassing in the upper part of the Pechora Sea sediment section and its relation to tectonics, Doklady Earth Sciences, 2021, vol. 499, no. 2, p. 605–610.
32. Solov’ev V.A., Ginsburg G.D. [Submarine cryolithozone. Distribution forecast], Atlas: geologiya i poleznye iskopaemye shel’fov Rossii [Atlas: geology and Mineral Resources of the Shelves in Russia], Moscow, 2004, GIN RAN Publ., p. 3–9. (In Russian)
33. Stupakova A.V. Struktura i neftegazonosnost’ Barentsevo-Karskogo shel’fa i prilegayushchikh territorii [Structure and oil and gas potential of the Barents-Kara shelf and adjacent territories], Geologiya nefti i gaza, 2011, no. 6, p. 99–115. (In Russian)
34. Stupakova A.V., Bol’shakova A.A., Suslova A.A. et al. Neftegazomaterinskie tolshchi Barentsevo-Karskogo shel’fa: oblast’ rasprostraneniya i svoistva [Oil and gas source rocks of the Barents-Kara shelf: distribution area and properties], Georesursy, 2021, vol. 23, no. 2, p. 6–25. (In Russian)
35. Svendsen J. Late Quaternary ice sheet history of northern Eurasia, Quaternary Science Reviews, 2004, 23, p. 1229– 1271, DOI: 10.1016/j.quascirev.2003.12.008.
36. Weatherall P., Marks K.M., Jakobsson M et al. A new digital bathymetric model of the world’s oceans, Earth and Space Science, 2015, vol. 2, iss. 8, p. 331–345, DOI: 10.1002/2015EA000107.
37. Web sources
38. Borodkin V.N., Smirnov O.A., Inozemtseva L.A. [“Explosion pipes” in the waters of the Barents-Kara Seas and the north of Western Siberia – one of the positive criteria for forecasting oil and gas content], Tyumenskaya oblast’: istoricheskaya retrospektiva, realii nastoyashchego, kontury budushchego [Tyumen oblast: historical retrospective, realities of the present and contours of the future], Sbornik statei mezhdunarodnoi nauchnoi konferentsii, 2019, p. 547–553, URL: http://www.ipgg.sbras.ru/en/science/publications/publ-trubki-vzryva-v-akvatorii-barentsevo-karskogo-547553-2019 (access date 10.12.2024). (In Russian)
39. Kozlov S.A. Otsenka ustoichivosti geologicheskoi sredy na morskikh mestorozhdeniyakh uglevodorodov v Arktike (Assessing the stability of the geological environment of offshore hydrocarbon deposits in the Arctic), Elektronnyi nauchnyi zhurnal neftegazovoe delo, 2005, no. 1, URL: https://ogbus.ru/article/view/inzhenerno-geologicheskaya-stratifikaciya-zapadno-arkticheskoj (access date 10.12.2024). (In Russian)
Review
For citations:
Denisova A.P., Eremenko E.A., Moroz E.A., Kohan A.V., Suhih E.A., Ananiev R.A., Sokolov S.Yu. Pockmarks morphology at the Barents sea shelf and its determining factors. Lomonosov Geography Journal. 2025;(2):99-115. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.80.2.8