Distribution of iodine and selenium in soils and groundwater of rural areas in the Oryol region as a risk factor for thyroid cancer
https://doi.org/10.55959/MSU0579-9414.5.80.1.3
Abstract
The environmental iodine and selenium deficiency is prevalent in Russia, including the Oryol region, leading to an increased risk of thyroid cancer (TC) among the local population.
The aim of the research is to investigate the spatial heterogeneity of the TC incidence in relation to the environmental distribution of iodine and selenium in the Oryol region.
Samples were collected from 52 rural settlements (20 cm layer of pasture soils (n = 54) and drinking groundwater (n = 104)). The investigation revealed a high heterogeneity of the concentration of the elements both in soils and in natural water. The concentrations of I and Se were found to be lower in Greyic Phaeozems Albic (median I content: 1,68 mg/kg; Se: 0,155 mg/kg) than in Voronic Chernozems Pachic (I: 2,53 mg/kg; Se: 0,158 mg/kg). The iodine concentrations in all soil samples were lower than the optimal level (5 mg/kg), while Se content was lower than the optimum (0,2–0,7 mg/kg) in 55% of samples. The distribution of the elements in the groundwater is primarily in correlation with particular aquifers. Higher concentrations of iodine are associated with the Frasnian carbonate-terrigenous complex (I: 9,89 μg/l; Se: 0,09 μg/l), while lower concentrations are associated with the Famennian carbonate complex (I: 3,83 μg/l; Se: 0,2 μg/l). Concentrations were found to be below the optimum in 67 % of groundwater samples for iodine (10 μg/l), and in 99 % for selenium (2,5 μg/l). A notable variation in iodine and selenium levels was observed between the districts with low and high TC risk in the region. Based on the data obtained, it is possible to estimate the environmental impact on the TC morbidity.
Keywords
About the Authors
V. S. BaranchukovRussian Federation
Scientific Researcher
Laboratory of Environmental Biogeochemistry
Moscow
V. Yu. Berezkin
Russian Federation
Senior Scientific Researcher, Ph.D. in Geology
Laboratory of Environmental Biogeochemistry
Moscow
L. I. Kolmykova
Russian Federation
Scientific Researcher, Ph.D. in Geology
Laboratory of Environmental Biogeochemistry
Moscow
V. N. Danilova
Russian Federation
Scientific Researcher
Laboratory of Environmental Biogeochemistry
Moscow
A. A. Dolgonosov
Russian Federation
Junior Scientific Researcher
E.M. Galimov Laboratory of Carbon Geochemistry
Moscow
References
1. Arthur J.R., Beckett G.J. Symposium 2 Newer aspects of micronutrients in at risk groups: New metabolic roles for selenium, Proc. Nutr. Soc., 1994, vol. 53, no. 3, p. 615–624, DOI: 10.1079/PNS19940070.
2. Atlas of Caesium 137 deposition on Europe after the Chernobyl accident, M. De Cort (еd.). Luxembourg, Office for Official Publications of the European Communities, 1998, 63 p.
3. Bogović Crnčić T. Risk Factors for Thyroid Cancer: What Do We Know So Far? Acta clinica Croatica, 2020, no. 59, p. 66–72, DOI: 10.20471/acc.2020.59.s1.08.
4. Bonnefond S., Davies T.F. Thyroid Cancer – Risks and Causes, Oncology & Hematology Review (US), 2014, vol. 10, no. 02, p. 144, DOI: 10.17925/OHR.2014.10.2.144.
5. Boyev V.A. Selen v pochvakh i sel’skokhozyaistvennykh kul’turakh yuga Tyumenskoi oblasti [Selenium in the soils and agricultural plants in the south of Tyumen region], Vestnik Tyumenskogo gosudarstvennogo universiteta, Seriya: Ekologiya, 2013, no. 12, p. 112–120. (In Russian)
6. Cardis E., Kesminiene A., Ivanov V. et al. Risk of Thyroid Cancer After Exposure to 131I in Childhood // JNCI: Journal of the National Cancer Institute, 2005, vol. 97, no. 10, p. 724–732, DOI: 10.1093/jnci/dji129.
7. Choi W.J., Kim J. Dietary Factors and the Risk of Thyroid Cancer : A Review, Clin Nutr Res., 2014, vol. 3, no. 2, p. 75, DOI: 10.7762/cnr.2014.3.2.75.
8. Dannye po radioaktivnomu zagrjazneniju territorii naseljonnyh punktov Rossijskoj Federacii ceziem – 137, stronciem – 90 i plutoniem – 239+240 [The data on radioactive contamination of the territory of the settlements of the Russian Federation by caesium – 137, strontium – 90 and plutonium – 239+240], S.M. Valkylovsky (ed.), Obninsk, Typhoon Publ., 2022, 233 p. (In Russian)
9. Drozd V.M. et al. Major Factors Affecting Incidence of Childhood Thyroid Cancer in Belarus after the Chernobyl Accident: Do Nitrates in Drinking Water Play a Role? PLoS One, 2015, vol. 10, no. 9, e0137226, DOI: 10.1371/journal.pone.0137226.
10. Gerasimov G., Judenitch O., Dedov I. Iodine Deficiency Disorders and Endemic Goiter in the Commonwealth of Independent States (CIS), Iodine Deficiency in Europe: A Continuing Concern NATO ASI Series, F. Delange, J.T. Dunn, D. Glinoer (eds.), Boston, MA, Springer US, 1993, p. 347–351, DOI: 10.1007/978-1-4899-1245-9_43.
11. Global Scorecard of Iodine. Nutrition in 2020 in the General Population Based on School-Age Children (SAC), IGN, Ottava, 2021, p. 15.
12. GOST 26213-2021 Pochvy, Metody opredelenija organicheskogo veshhestva [State Standart 26213-2021 Soils, Methods for determination of organic matter], Official publication, Moscow, FGBU RST, 2021, 11 p. (In Russian)
13. GOST R 59024-2020 Voda, Obshhie trebovanija k otboru prob (Izdanie s Izmeneniem nо 1). [State Standart R 59024-2020 Water, General requirements for sampling (Edition with Amendment No. 1), Official publication. Moscow, FGBU RST, 2023, 40 p. (In Russian)
14. Hanley J.P., Jackson E., Morrissey L.A. et al. Geospatial and Temporal Analysis of Thyroid Cancer Incidence in a Rural Population, Thyroid, 2015, vol. 25, no. 7, p. 812–822.
15. International soil classification system for naming soils and creating legends for soil maps, 4<sup>th</sup> edition, Vienna, International Union of Soil Sciences (IUSS), 2022, 236 p.
16. Ivanov A.V., Shoba S.A. Edinyj gosudarstvennyj reestr pochvennyh resursov Rossii. Versija 1.0 [Unified State Register of Soil Resources of Russia. Version 1.0], Tula, Grif and K Publ., 2014, 768 p. (In Russian)
17. Ivanov V.K., Tsyb A.F., Maksyutov M.A. et al. Osnovnye rezul’taty radiacionno-epidemiologicheskogo analiza dannyh RGMDR (k 20-letiju Chernobylja) [Basic results of the radiation-epidemiological analysis of the RGMDR data (on the 20<sup>th</sup> anniversary of Chernobyl accident)], Radiacija i risk (Bjulleten’ Nacional’nogo radiacionno-jepidemiologicheskogo registra), 2005, no. S3, p. 6–111. (In Russian)
18. Jang J., Yoo D.-S., Chun B.C. Spatial distribution and determinants of thyroid cancer incidence from 1999 to 2013 in Korea, Sci Rep., 2021, vol. 11, no. 1, p. 22474, DOI: 10.1038/s41598-021-00429-w.
19. Klassifikatsiya i diagnostika pochv Rossii [Russian soil classification and diagmostics], L.L. Shishov et al. Smolensk, Oikumena Publ., 2004, 341 p. (In Russian)
20. Kolmykova L.I. Osobennosti vodnoi migratsii ioda i selena v geokhimicheski kontrastnykh landshaftakh Bryanskoi oblasti [Specific features of water migration of iodine and selenium in geochemically contrasting landscapes of the Bryansk oblast], Ph.D. Thesis in Geosciences, Moscow, Institut geokhimii i analiticheskoi khimii Rossiiskoi akademii nauk, 2017, 179 p. (In Russian)
21. Kolmykova L.I., Korobova E.M. Iodine and selenium in natural waters as a risk factor in manifestation of endemic thyroid diseases (review), Theoretical and Applied Ecology, 2019, no. 2, p. 5–13, DOI: 10.25750/1995-4301-2019-2-005-013.
22. Korobova E.M., Baranchukov V.S., Bech J. Cartographic evaluation of the risk of natural elements’ deficiency in the soil cover provoking spatial variation of the endemic morbidity level (on example of thyroid morbidity among population of the Central Federal District, Russia), Environ Geochem Health, 2024, vol. 46, no. 3, аrt. 109, DOI: 10.1007/s10653-024-01912-9.
23. Korobova E.M., Baranchukov V.S., Kolmykova L.I. Theoretical and Methodological Approaches to the Analysis of the Spatial Distribution of Endemic Diseases of Geochemical Nature, Geochem. Int., 2023, vol. 61, no. 10, p. 1074–1086, DOI: 10.1134/S0016702923100063.
24. Korobova E.M., Baranchukov V.S., Kurnosova I.V., Silenok A.V. Spatial geochemical differentiation of the iodine-induced health risk and distribution of thyroid cancer among urban and rural population of the Central Russian plain affected by the Chernobyl NPP accident, Environ Geochem Health, 2022, vol. 44, no. 6, p. 1875–1891, DOI: 10.1007/s10653-021-01133-4.
25. Kovalsky V.V. Biologicheskaya rol’ ioda [Biological role of iodine], Nauchn. tr. VASKhNIL, 1972, p. 3–32. (In Russian)
26. Kovalsky V.V. Geokhimicheskaya ekologiya [Geochemical ecology], Moscow, 1974, 282 p. (In Russian)
27. Kovalsky V.V., Andrianova G.A. Mikrojelementy v pochvah SSSR [Micronutrients in the soils of the USSR], Moscow, Nauka Publ., 1970, 180 p. (In Russian)
28. Lossow K., Renko K., Schwarz M. et al. The Nutritional Supply of Iodine and Selenium Affects Thyroid Hormone Axis Related Endpoints in Mice, Nutrients, 2021, vol. 13, no. 11, p. 3773, DOI: 10.3390/nu13113773.
29. Mann H.B., Whitney D.R. On a Test of Whether One of Two Random Variables is Stochastically Larger than the Other, The Annals of Mathematical Statistics, 1947, vol. 18, no. 1, p. 50–60, DOI: 10.1214/aoms/1177730491.
30. MUK 4.1.033-95 Metody kontrolya. Khimicheskie faktory. Opredelenie selena v produktakh pitaniya [Methodological guidelines 4.1.033-95. Control methods. Chemical factors. Determination of selenium in foodstuffs], Moscow, Informatsionno-izdatel’skii tsentr Goskomsanepid-nadzora Rossii Publ., 1995, 5 p. (In Russian)
31. Nikitina L.P., Ivanov V.N., Anikina L.V. [Selenium in rocks and soils], Selen v zhizni cheloveka i zhivotnykh [Selenium in the life of humans and animals], Moscow, VINITI RAN Publ., 1995, p. 17–19. (In Russian)
32. Otchet o nauchno-issledovatel’skoi rabote po teme: Razrabotka i prakticheskaya realizatsiya biologizirovannykh sistem zemledeliya, obespechivayushchikh sushchestvennoe snizhenie energo- i resursozatrat i ekologostabiliziruyushchii effekt v agroekosistemakh (zaklyuchitel’nyi) [Report on the research on the topic: Development and practical implementation of biological farming systems providing for a significant reduction in energy and resource costs and an ecologically stabilizing effect in agroecosystems (final)], N.V. Parakhin (ed.), Oryol, Orlovskii Gosudarstvennyi Agrarnyi Universitet Publ., 2013, 225 p. (In Russian).
33. Otchet o rezul’tatakh rabot po ob”ektu “Sostavlenie kart raionirovaniya territorii TsFO masshtaba 1:500 000 (s vrezkami masshtaba 1:200 000) dlya optimizatsii proizvodstva regional’nykh gidrogeologicheskikh, inzhenerno-geologicheskikh i geoekologicheskikh rabot v period 2005–2010 godov” : v 2-kh tomakh [Report on the results of work on the object “Compilation of maps of zoning of the territory of the Central Federal District at the scale of 1:500 000 (with inserts at the scale of 1:200 000) for optimisation of regional hydrogeological, engineering-geological and geoecological works during 2005–2010”, in 2 volumes] G.V. Lyashchenko, V.V. Kurennoi (eds.), Moscow, Geotsentr-Moskva Publ., 2007, vol. 1, 106 p. (In Russian)
34. Otchet po teme “Sostavlenie komplekta gidrogeologicheskikh kart masshtaba 1:500000 territorii deyatel’nosti Tsentral’nogo RGTs”, v 5 t., t. 1, kn. 9, Poyasnitel’naya zapiska k gidrogeologicheskim kartam “Vodonosnye gorizonty kainozoiskikh otlozhenii” i “Vody mezozoiskikh, paleozoiskikh i dokembriiskikh otlozhenii”, masshtab 1:500 000, Orlovskaya oblast’ [Report on the theme ‘Compilation of a set of hydrogeological maps at a scale of 1:500 000 of the Central RGC activity area’, in 5 vols, t. 1, book 9, Explanatory note to hydrogeological maps ‘Aquifers of Cenozoic sediments’ and ‘Waters of Mesozoic, Paleozoic and Precambrian sediments’], N.S. Viktorova (еd.), Moscow, Mezhregional’nyi tsentr po geologicheskoi kartografii, Geokart Publ., 2001, 28 p.
35. Proskuryakova G.F., Nikitina O.N. Uskorennyi variant kineticheskogo rodanidno-nitritnogo metoda opredeleniya mikrokolichestv ioda v biologicheskikh ob”ektakh [The accelerated variant of the kinetic rhodanide-nitrite method for determination of trace quantities of iodine in biological objects], Agrokhimiya, 1976, no. 7, p. 140–143. (In Russian)
36. Shakhtarin V.V., Tsyb A.F., Stepanenko V.F. et al. Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident, International journal of epidemiology, 2003, vol. 32, no. 4, p. 584–591, DOI: 10.1093/ije/dyg205.
37. Shapiro S.S., Wilk M.B. An analysis of variance test for normality (complete samples), Biometrika, 1965, vol. 52, no. 3–4, p. 591–611, DOI: 10.1093/biomet/52.3-4.591.
38. Simonova V.G. Analysis of the incidence of thyroid cancer in the population of the Oryol Region, Sanitary Doctor, 2022, no. 2, p. 132–141, DOI: 10.33920/med-08-2202-05.
39. Sindireva A.V., Kotchenko S.G., Gur’ev N.E. Geokhimicheskaya otsenka soderzhaniya selena v osnovnykh tipakh pochv Tyumenskoi oblasti [Geochemical assessment of selenium content in the main soil types of the Tyumen Oblast], Problemy regional’noi ekologii, 2021, no. 3, p. 32–38. (In Russian)
40. Stepanenko V., Kondrashov A., Yaskova E. et al. The reconstruction of thyroid dose following Chernobyl, The radiological consequences of the Chernobyl accident, 1996, р. 7–12.
41. Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA, A Cancer J. Clinicians, 2021, vol. 71, no. 3, p. 209–249, DOI: 10.3322/caac.21660.
42. Turetskaya E.S., Danileichenko V.A. [Iodine, bromine, cobalt and copper in drinking water of a mountainous area and endemic disease], Mikroelementy v zhivotnovodstve i meditsine [Trace elements in cattle breeding and medicine], Kiev, Zdorov’e Publ., 1965, p. 62–67. (In Russian)
43. Zabolevaemost’ vsego naseleniya Rossii v 2017 godu. Statisticheskie materialy [Morbidity of the total population of Russia in 2017. Statistical materials], Moscow, Tsentral’nyi nauchno-issledovatel’skii institut organizatsii i informatizatsii zdravookhraneniya Minzdrava Rossii Publ., 2018, 140 p. (In Russian)
44. Zlokachestvennye novoobrazovanija v Rossii v 2021 godu (zabolevaemost’ i smertnost’) [Malignant neoplasms in Russia in 2021 (morbidity and mortality)], A.D. Kaprin, V.V. Starinsky, A.O. Shakhzodova (eds.), Moscow, P.A. Herzen Publ., 2022, 252 p. (In Russian)
45. Zvonova I., Krajewski P., Berkovsky V. et al. Validation of 131I ecological transfer models and thyroid dose assessments using Chernobyl fallout data from the Plavsk district, Russia, Journal of Environmental Radioactivity, 2010, vol. 101, no. 1, p. 8–15, DOI: 10.1016/j.jenvrad.2009.08.005.
46. Global Cancer Observatory: Cancer Today, URL: https://gco.iarc.who.int/today (access date 17. 07. 2024).
47. SanPiN 1.2.3685-21 Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya [Hygienic norms and requirements 1.2.3685-21 Hygienic norms and requirements to ensure safety and (or) harmlessness of environmental factors for humans], Official Internet portal of legal information www.pravo.gov.ru Publ., 2021, nо 0001202102030022 (access date 06. 12. 2024). (In Russian)
48. Vyborochnoe nablyudenie ratsiona pitaniya naseleniya 2013 [Selective observation of the population’s dietary intake 2013], URL: https://rosstat.gov.ru/free_doc/new_site/food1/survey0/index.html (access date 17. 07. 2024). (In Russian)
Review
For citations:
Baranchukov V.S., Berezkin V.Yu., Kolmykova L.I., Danilova V.N., Dolgonosov A.A. Distribution of iodine and selenium in soils and groundwater of rural areas in the Oryol region as a risk factor for thyroid cancer. Lomonosov Geography Journal. 2025;(1):41-55. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.80.1.3