The effect of total sediment runoff on erosion and accumulation processes in the valley of the Djankuat stream, Greater Caucasus
https://doi.org/10.55959/MSU0579-9414.5.79.6.11
Abstract
The article presents the results of the study of the suspended and bed sediment runoff for the modern period. In addition the features of sediment deposition within a valley bottom section of the Djankuat stream catchment (F = 9,1 km2, Qmean = 1,5 m3/s) with predominance of accumulation are discussed. Field research methods included direct measurements of bed load using the Helly-Smith sampler, determination of the average diameter of bed load and floodplain sediments, channel deformations and accumulation rates on the floodplain within the broader section of the valley floor, including the radiocesium dating method. It has been established that the total sediment runoff of the Djankuat Stream is 10,1·106 kg/year, 13% of which is the bed load. According to the bed load sediment budget observations in 2016 and 2023, as well as the radiocesium dating of floodplain sediments, the accumulation rate on the floodplain within the broader section of the valley floor is 4,8–5,6 ± 1,0 mm/year over the total period since its origination (120 years). During 2016–2023 the volume of annual channel erosion within the same section is 1260 tons/year. The nine-fold difference between the average diameter of the bed load sediments and the median diameter of the floodplain sediments within the broader section of the valley floor indicates that the main deposition events are related to extreme floods with less frequent water discharges.
About the Authors
V. A. IvanovRussian Federation
Junior Scientific Researcher, Post-Graduate Student
V. N. Golosov
Russian Federation
Leading Scientific Researcher, D.Sc. in Geography
A. S. Tsyplenkov
New Zealand
Scientific Researcher, Ph.D. in Geohraphy
4410 Palmerston North
A. V. Konoplev
Russian Federation
Professor, D.Sc. in Biology
References
1. Alejnikova A.M., Petrushina M.N. Struktura i dinamika prilednikovyh landshaftov Priel’brus’ya [The structure and dynamics of periglacial landscapes in Prielbrusie], Lyod i Sneg, 2011, vol. 2, no 114, р. 127–134. (In Russian)
2. Bollati I.M., Cavalli M. Unraveling the relationship between geomorphodiversity and sedi-ment connectivity in a small alpine catchment, Transactions in GIS, 2021, vol. 25, no. 5, DOI: 10.1111/tgis.12793.
3. Cavalli M., Trevisani S., Comiti F. et al. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments, Geomorphology, 2013, vol. 188, p. 31– 41, DOI: 10.1016/j.geomorph.2012.05.007.
4. Chernomorec S.S., Petrakov D.A., Alejnikov A.A. et al. The outburst of Bashkara glacie r lake (Central Caucasus, Russia) on September 1, 2017, Earth’s Cryosphere, 2018, vol. 22, no. 2, р. 61–70.
5. Chernomorec S.S., Petrakov D.A., Krylenko I.V. et al. Dinamika lednikovo-ozernogo kompleksa Bashkara i otsenka selevoj opasnosti v doline reki Adyl-Su (Kavkaz) [Changes of the Bashkara glacier lake system and assessment of debris flow hazard in the Adyl-Su River valley], Kriosfera Zemli, 2007, vol. 11, no. 1, р. 72–84. (In Russian)
6. Cyplenkov A.S. Identifikaciya dolevogo vklada razlichnyh istochnikov v stok nano-sov malyh gornyh rek zony sovremennogo oledeneniya [Identification of the contribution of different sources into the sediment discharge for the small nountain rivers within the present-day glaciations zone], Makkaveevskie chteniya – 2019 [Makkaveev Scientific Conference – 2019], Sbornik materialov ezhegodnogo nauchnogo seminara. Moscow, Geograficheskij fakul’tet MGU, 2020, р. 94–105. (In Russian)
7. Dyurgerov M.B., Frejdlin V.S., Chernova L.P. [Suspended matter runoff in the Djankuat Glacicer basin in summer 1970], Materialy glyaciologicheskih issledovanij [Materials of glaciological studies], 1972, vol. 19, р. 253–254. (In Russian)
8. Engel M., Coviello V., Savi S. et al. Meltwater-driven sediment transport dynamics in two contrasting alpine proglacial streams, Journal of Hydrology, 2024, vol. 635, p. 131171.
9. Geomorphology of Proglacial Systems: Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes (Geography of the Physical Environment), T. Heck mann, D. Morche (eds.), Cham, Springer International Publ., 2019, DOI: 10.1007/978-3-319-94184-4.
10. Golubev G.N. Gidrologiya lednikov [Hydrology of glaciers], Leningrad, Gidrometeoizdat Publ., 1976, 24 р. (In Russian)
11. Gray J.R., Laronne J.B., Marr J.D.G. Bedload-surrogate monitoring technologies, US Geological Survey Scientific Investigations Report, 2010, vol. 5091.
12. Hallet B., Hunter L., Bogen J. Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications, Global and Planetary Change, 1996, vol. 12, no. 1–4.
13. Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides, 2003, DOI: 10.1007/0-306-48054-9.
14. Harchenko S.V., Golosov V.N., Cyplenkov A.S. et al. Tempy sovremennoj denudacii malogo vodosbora v srednegornom poyase Bol’shogo Kavkaza (na primere vodosbora Gitche-Gizhgit) [Rates of modern denudation of a small catchment in the middle mountain belt of the Greater Caucasus (case study of the Gitche-Gizhgit catchment)], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2023, vol. 78, no. 3, р. 38–51. (In Russian)
15. Helley E.J., Smith W. Development and calibration of a pressure-difference bedload sampler, US Department of the Interior, Geological Survey, Water Resources Division, 1971.
16. Hinderer M. From gullies to mountain belts: A review of sediment budgets at various scales, Sedimentary Geology, 2012, vol. 280, p. 21–59, DOI: 10.1016/j.sedgeo.2012.03.009.
17. Hinderer M., Kastowski M., Kamelger A. et al. River loads and modern denudation of the Alps – A review, EarthScience Reviews, 2013, vol. 118, DOI: 10.1016/j.earscirev.2013.01.001.
18. Ivanov M.M., Ivanova N.N., Golosov V.N., Shamshurina E.N. Assessing the accumulation of sorbed isotope 137CS within the upper components of the fluvial network in the zone of Chernobyl contamination, Geography and Natural Resources, 2016, vol. 37, no. 4, p. 355–361.
19. Karaushev A.V. Teoriya i metody rascheta rechnyh nanosov [Theory and methods of river sediments calculation], Leningrad, Gidrometeoizdat Publ., 1977, 271 р. (In Russian)
20. Kedich A., Kharchenko S., Tsyplenkov A. et al. Lateral moraine failure in the valley of the Djankuat Catchment (Central Caucasus) and subsequent morphodynamics, Geomorphology, 2023, vol. 441, DOI: 10.1016/j.geomorph.2023.108896.
21. Kharchenko S., Tsyplenkov A., Petrakov D. et al. Causes and consequences of the streambed restructuring of the Koiavgan Creek (North Caucasus, Russia), E3S Web of Conferences, 2020, vol. 163, DOI: 10.1051/e3sconf/202016302003.
22. Koppes M.N., Montgomery D.R. The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales, Nature Geoscience, 2009, vol. 2, no. 9, DOI: 10.1038/ngeo616.
23. Kuz’menkova N.V., Golosov V.N., Grabenko E.A. et al. Skorosti osadkonakopleniya v gornyh ozerah Kavkaza kak indikatory tempov denudacii na ih vodosborah [Sedimentation rates evaluation in Caucasus Mountain lakes as indicators of their catchments denudation], Izvestiya Rossijskoj Akademii Nauk, Seriya Geograficheskaya, 2023, vol. 87, no. 1, р. 42–59, DOI: 10.31857/S2587556623010107. (In Russian)
24. Lednik Dzhankuat: Centr. Kavkaz [The Djankuat Glacier: Ctntral Caucasus], I.Ya. Boyarsky (еd.), Leningrad, Gidrometeoizdat Publ., 1978, 184 р. (In Russian)
25. Mozzherin V.V., Sharifullin A.G. Ocenka sovremennogo denudacionnogo snizheniya gor po dannym o stoke vzveshennyh nanosov rek (na primere Tyan’-Shanya, PamiroAlaya, Kavkaza i Al’p) [Estimation of current denudation rate of the mountains based on the suspended sediment runoff of the rivers (the Tien Shan, the Pamir-Alai, the Caucasus and the Alps as an example)], Geomorfologiya, 2014, no. 1, р. 15–23, DOI: 10.15356/0435-4281-20141-15-23. (In Russian)
26. Otto J.C., Schrott L., Jaboyedoff M. et al. Quantifying sediment storage in a high alpine valley (Turtmann tal, Switzerland), Earth Surface Processes and Landforms, 2009, vol. 34, no. 13, DOI: 10.1002/esp.1856.
27. Popovnin V., Gubanov A., Lisak V. et al. Recent Mass Balance Anomalies on the Djankuat Glacier, Northern Caucasus, Atmosphere, 2024, vol. 15, no. 1, p. 107, DOI: 10.3390/atmos15010107.
28. Porto P., Callegari G. Using 7Be measurements to explore the performance of the SEDD model to predict sediment yield at event scale, Catena, 2021, vol. 196, DOI: 10.1016/j.catena.2020.104904.
29. Severnyj Kavkaz, Resursy poverhnostnyh vod SSSR [Northern Caucasus, Resources of surface waters in the USSR], Leningrad, Gidrometeoizdat Publ., 1973, vol. 8, 124 р. (In Russian)
30. Rets E., Popovnin V.V., Toropov P.A. et al. Djankuat glacier station in the North Caucasus, Russia: A database of glaciological, hydrological, and meteorological observations and stable iso-tope sampling results during 2007–2017, Earth System Science Data, 2019, vol. 11, no. 3, DOI: 10.5194/essd-11-1463-2019.
31. Schlunegger F., Hinderer M. Pleistocene/Holocene climate change, re-establishment of flu-vial drainage network and increase in relief in the Swiss Alps, Terra Nova, 2003, vol. 15, no. 2, DOI: 10.1046/j.1365-3121.2003.00469.x.
32. Sharifullin A.G. Sovremennaya denudaciya v gorah Kavkaza i Srednej Azii: territo-rial’nye osobennosti i faktory, ih opredelyayushchie [Current denudation in the mountains of the Caucasus and the Middle Asia: territorial features and the governing factors], Kazan, Kazanskij (Privolzhskij) federal’nyj universitet, 2015, 22 р. (In Russian)
33. Syvitski J.P.M., Milliman J.D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean, Journal of Geology, 2007, vol. 115, no. 1, DOI: 10.1086/509246.
34. Tielidze L.G., Nosenko G.A., Khromova T.E. et al. Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020, Cryosphere, 2022, vol. 16, no. 2, DOI: 10.5194/tc-16-489-2022.
35. Tsyplenkov A., Vanmaercke M., Collins A.L. et al. Elucidating suspended sediment dynamics in a glacierized catchment after an exceptional erosion event: The Djankuat catchment, Caucasus Mountains, Russia, Catena, 2021, vol. 203, DOI: 10.1016/j.catena.2021.105285.
36. Tsyplenkov A., Vanmaercke M., Golosov V. Contemporary suspended sediment yield of Caucasus mountains, Proceedings of the International Association of Hydrological Sciences, 2019, vol. 381, DOI: 10.5194/piahs-381-87-2019.
37. Tsyplenkov A., Vanmaercke M., Golosov V. et al. Suspended sediment budget and intra-event sediment dynamics of a small glaciated mountainous catchment in the Northern Caucasus, Journal of Soils and Sediments, 2020, vol. 20, no. 8, DOI: 10.1007/s11368-020-02633-z.
38. Verhaegen Y., Huybrechts P., Rybak O. et al. Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100CE, Cryosphere, 2020, vol. 14, no. 11, DOI: 10.5194/tc-14-4039-2020.
39. Zemp M., Frey H., Gärtner-Roer I. et al. Historically unprecedented global glacier decline in the early 21st century, Journal of Glaciology, 2015, vol. 61, no. 228, DOI: 10.3189/2015JoG15J017
Review
For citations:
Ivanov V.A., Golosov V.N., Tsyplenkov A.S., Konoplev A.V. The effect of total sediment runoff on erosion and accumulation processes in the valley of the Djankuat stream, Greater Caucasus. Lomonosov Geography Journal. 2024;(6):129–145. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.79.6.11