Mathematical and statistical analysis of geo-images for studying the spatial organization of geosystems
https://doi.org/10.55959/MSU0579-9414.5.79.5.4
Abstract
An important line of landscape studies is the development of new methods for quantitative analysis of spatial information basing on the progressing theoretical basis, here the theory of complex geosystems, their models of linear ordering and cohesion of various parts of a territorial entity. The method is based on the procedures of tangent stratification (fiber bundle) of geosystem functions of the connection of geographical characteristics and their transformation, which makes it possible to identify the genetic basis (geonome) of landscape structure and landscape organization based on space geo-images. Raster geo-images are deployed in a linear sequence, and the linear cohesion of the brightness values of different channels is calculated using the rolling regression method. A geonom has been identified and raster mapping of regression coefficients as parameters of the order of mountain landscapes of the southern macro-slope of the Tunka goletzy in the Eastern Sayan Mountains has been carried out. The multipath geonomic function calculated from spatial data displays the hidden essence of the original geo-image, which can be restored with 88% accuracy using this function. Each path ray highlights a geonome of a corresponding geomere, according to which it becomes possible to compare and classify geosystems, as well as to trace their spatial and temporal variability. High values of the cohesion order parameters relate to the geosystems of highlands, northern slopes and river valleys; they also highlight the point boundaries of the geomere’s cores and the lineaments of the territorial structure.
Keywords
About the Authors
A. K. CherkashinRussian Federation
Professor, Chief Scientifi c Researcher, D. Sc. in Geography
E. A. Rasputina
Russian Federation
Senior Scientific Researcher, Ph. D. in Geography
References
1. Avdeev V.A., Yablonsky L.I. Obespechenie geoinformacionnoj svyaznosti territorii na osnove razvitiya infrastruktury prostranstvennykh dannykh [Ensuring geographic information connectivity of the territory based on the development of spatial data infrastructure], Vestnik SGUGiT, 2022, vol. 27, no. 3, р. 30–39. (In Russian)
2. Bittner T. Towards a quantum theory of geographic fields, 13th International conference on spatial information theory (COSIT 2017). Leibniz International Proceedings in Informatics. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 2017, Article no. 5, p. 5:1–5:14.
3. Cherkashin A.K. Metateoreticheskoe semioticheskoe modelirovanie v nauke i tekhnike [Metatheoretical semiotic modeling in science and technology], Informatsionnye i matematicheskie tekhnologii v nauke i upravlenii, 2022, no. 2(26), p. 5–23. (In Russian)
4. Cherkashin A.K. Polisistemnoe modelirovanie [Polysystem modeling], Novosibirsk, Nauka Publ., 2005, 280 p. (In Russian) Cherkashin A.K., Rasputina E.A. Kompleksnaya geografiya kak napravlenie teoreticheskikh issledovanij i modelirovaniya [Integrated geography as a field of theoretical research and modeling], Geograficheskij vestnik, 2022, no. 1(60), p. 6–22, DOI: 10.17072/2079-7877-2022-1-6 22. (In Russian)
5. Gomologiya i gomotopiya geograficheskikh sistem [Homology and homotopy of geographical systems], A.K. Cherkashin, E.A. Istomina (еds.), Novosibirsk, Geo Publ., 2009, 351 p. (In Russian)
6. Haken H. Erfolgsgeheimnisse der Natur. Synergetik – Die Lehre vom Zusammenwirken, DVA, 1981.
7. In’kova O., Manzotti Je. Svyaznost’ teksta. Mereologicheskie logiko-semanticheskie otnosheniya [The cohesion of text. Mereological logical-semantic relations], Moscow, Jazyki slavjanskoj kul’tury Publ., 2019, 376 p. (In Russian)
8. Ioffe A.D., Tihomirov V.M. Dvojstvennost’ vypuklykh funktsij i ekstremal’nye zadachi [The duality of convex functions and extreme problems], Uspekhi matematicheskikh nauk, 1968, vol. 23, iss. 6, p. 51–116. (In Russian)
9. Istomina E.A. Geoinformatsionnoe kartografirovanie landshaftov Tunkinskoj kotloviny na osnove metoda faktoral’no-dinamicheskoj klassifikatsii [Geoinformation mapping of the Tunka basin landscapes based on the method of factoral-dynamic classification], Geodezy and Cartography, 2012, no. 4, p. 32–39. (In Russian)
10. Istomina E.A., Cherkashin A.K. Identifying the boundaries of functionally homogeneous areas in space images from a calculation of the Jacobian determinant, Geography and Natural Resources, 2013, vol. 34, no. 1, p. 88–95.
11. Istomina E.A., Cherkashin A.K. Matematicheskie modeli geograficheskogo kompleksa i ikh primenenie dlya analiza kosmicheskoj informatsii [Mathematical models of a geographical complex and their application for the analysis of space information], Izvestiya RAN, Ser. geogr., 2005, no. 2, p. 103–113. (In Russian)
12. Khoroshev A.V. Polimasshtabnaya organizatsiya geograficheskogo landshafta [Multi-scale organization of a geo graphical landscape], Moscow, Tovarishhestvo nauchnykh izdanij KMK Publ., 2016, 416 p. (In Russian)
13. Khoroshev A.V., Puzachenko Yu.G., D’yakonov K.N. Sovremennoe sostoyanie landshaftnoj ekologii [The current state of landscape ecology], Izvestiya RAN, Ser. geogr., 2006, no. 5, p. 12–21. (In Russian)
14. Komissarova T.S., Skupinova E.A., Titova O.V. Geoekologicheskij karkas territorii kak prostranstvennaya sovokupnost’ geosistem raznogo tipa [The geoecological framework of the territory as a spatial set of geosystems of different types], Vestnik LGU im. A.S. Pushkina, 2013, vol. 3, no. 1, p. 7–17. (In Russian)
15. Kozlov D.N., Puzachenko M.Yu., Fedyaeva M.V., Puzachenko Yu.G. Otobrazhenie prostranstvennogo var’irovaniya svojstv landshaftnogo pokrova na osnove distantsionnoj informatsii i tsifrovoj modeli rel’efa [Displaying spatial variation of landscape cover properties based on remote information and a digital relief model], Izvestiya RAN, Ser. geogr., 2008, no. 4, р. 112–124. (In Russian)
16. Makunina G.S. Tri sostavlyayushchie sistemnoj organizatsii landshafta v kontseptsiyakh F.I. Kozlovskogo, A.A. Krauklisa i V.N. Solntseva [Three components of the system organization of landscape in the concepts by F.I. Kozlovsky, A.A. Krauklis and V.N. Solntsev], Geography and Natural Resources, 2010, no. 1, p. 18–23. (In Russian)
17. Morozov A.S., Kontsevik G.I., Shmeleva I.A. et al. Assessing the transport connectivity of urban territories, based on intermodal transport accessibility, Frontiers in Built Environment, 2023, vol. 9, 2023, DOI: 10.3389/ fbuil.2023.1148708.
18. Sochava V.B. Vvedenie v uchenie o geosistemakh [Introduction to the doctrine of geosystems], Novosibirsk, Nauka Publ., 1978, 318 p. (In Russian)
19. Solntsev V.N. Sistemnaya organizatsiya landshaftov (problemy metodologii i teorii) [System organization of landscapes (problems of methodology and theory)], Moscow, Mysl’ Publ., 1981, 239 p. (In Russian)
20. Remote Sensing and GIS for Ecologists: Using Open Source Software, M. Wegmann, B. Leutner, S. Dech (еds.), Pelagic Publishing Ltd, 2016, 352 p.
21. Varshanina T.P., Plisenko O.A., Zorin V.P., Solodukhin A.A. GISNI samoorganizatsii geosystem [GISNI of self-organization of geosystems], Materialy Mezhdunarodnoj konferentsii “InterKarto. InterGIS”, 2013, iss. 19, vol. 1, p. 94–99. (In Russian)
22. Volkova V.N., Denisov A.A. Osnovy teorii sistem i sistemnogo analiza [Fundamentals of systems theory and system analysis], St. Petersburg, Polytechnic University Publ., 2005, 520 p. (In Russian)
23. Yarham R. How to Read the Landscape: A Crash Course in Interpreting the Great Outdoors, Ivy Press, 2018, 256 p.
Review
For citations:
Cherkashin A.K., Rasputina E.A. Mathematical and statistical analysis of geo-images for studying the spatial organization of geosystems. Lomonosov Geography Journal. 2024;(5):40-51. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.79.5.4