Preview

Lomonosov Geography Journal

Advanced search

Assessment of pyrogenic impact on forest areas in the Tver region

https://doi.org/10.55959/MSU0579-9414.5.79.1.10

Abstract

We consider the potential and limitations of widely accepted remote sensing algorithms for detecting forest areas damaged by fires, which allow the monitoring systems to automatically form data about the fire areas and the areas where death of tree stands is subsequently recorded. The resulting size of the detected areas has a measurement error, which is typically determined on the basis of a one-time survey for a large territory and one forest fire season. Depending on the geographical features of the territory, forest fires have specific spatiotemporal and qualitative characteristics, and are accompanied by specific heterogeneous damage to forests, which affect the accuracy of remote detection of a burnt area or fire-damaged forest. Hence the use of the unified large-area error estimate for local-level surveys could lead to inaccurate results. The analysis of space images of forest fund lands in the Tver region for the period 2007–2022 demonstrated the need to establish regional values of the measurement error for fire-impacted areas. By comparing the medium spatial resolution data with the data of high spatial resolution we identify a regional bias, which is significant given the relatively small size of the detected areas. The study demonstrates the expediency of establishing regional error values for measurements of pyrogenic impact on forest areas. By implementing the suggested changes we could improve the accuracy of remotely-sensed estimates of fire-impacted areas and the amount of associated damage to forests.

About the Authors

S. N. Zharinov
SCANEX
Russian Federation

Head, 
Forest Project Department

 



E. I. Golubeva
Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Prof., Dr.Sc. in Biology, 
Department of Environmental Management



M. V. Zimin
Lomonosov Moscow State University, Faculty of Geography; Institute of Geography, Russian Academy of Sciences, Department of cartography and remote sensing of the Earth
Russian Federation

Leading Researcher, Ph.D. in Geography, 
Laboratory of Aerospace Methods



References

1. Arino O., Plummer S., Defrenne D. Fire Disturbance: The ten years time series of the ATSR World Fire Atlas, Proceedings of the MERAS-AATSR Symposium, ESA publication, 2005, р. 597.

2. Bartalev S.A., Egorov V.A., Efremov V.Yu., Lupyan E.A., Styitsenko F.V., Flitman E.V. Otsenka ploschadi pozharov na osnove kompleksirovaniya sputnikovyh dannyh p[azlichnogo prostranstvennogo razresheniya MODIS Landsat-TM/ETM+ [Integrated burnt area assessment based on combined use of multi-resolution MODIS and Landsat-TM/ETM+ satellite data], Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, vol. 9, no. 2, р. 9–26. (In Russian)

3. Bartalev S.A., Egorov V.A., Loupian E.A., Uvarov I.A. Multi-year circumpolar assessment the area burnt in boreal ecosystems using SPOT-Vegetation, International Journal of Remote Sensing, 2007, vol. 28, no. 6, p. 1397–1404, DOI: 10.1080/01431160600840978.

4. Bartalev S.A., Styitsenko F.V., Hvostikov S.A., Lupyan E.A. Metodologiya monitoring i prognozirovaniya pirogennoj gibeli lesov na osnove dannyh sputnikovyh nablyudenij [Methodology for monitoring and forecasting pyrogenic forest loss based on satellite observations], Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, vol. 14, no. 6, p. 176–193, DOI: 10.21046/2070-7401-2017-14-6-176-193. (In Russian)

5. Bogdanov A.P., Aleshko P.A. Development of methodology for forest monitoring based on use of data of multispectral space imagery, Problemy ekologicheskogo monitoringa and modelirovaniya ekosistem, 2017, vol. ХХVIII, no. 1, p. 98–110, DOI: 10.21513/0207-2564-2017-1-98-110.

6. Fraser R.H., Li Z., Cihlar J. Hotspot and NDVI Differencing Synergy (HANDS): a new technique for burned area mapping over boreal forest, Remote Sens. Environ, 2000, vol. 74, p. 362–376.

7. Giglio L., Descloitres J., Justice Ch.O. et al. An Enhanced Contextual Fire Detection Algorithm for MODIS, Remote Sensing of Environment, 2003, vol. 87, p. 273–282, DOI: 10.1016/S0034-4257(03)00184-6.

8. Gregoire J.M., Tansey K., Silva J.M.N. The GBA2000 initiative: developing a global burned area database from SPOT-VEGETATION imagery, Int. J. Remote Sens., 2003, vol. 24, р. 1369.

9. Li Z., Kaufman Y.J., Ichoku C. et al. A review of AVHRRbased fire active fire detection algorithm: Principles, limitations, and recommendations, Global and Regional Vegetation Fire Monitoring from Space, Planning and Coordinated International Effort, 2001, р. 199–225.

10. Roy D.P., Boschetti L., Justice C.O. et al. The Collection 5 MODIS Burned Area Product – Global Evaluation by Comparison with the MODIS Active Fire Product, Remote Sens. Environ., 2008, vol. 112, p. 3690, DOI: 10.1016/j.rse.2008.05.013.

11. Rukovodstvo polzovatelya informatsionnoj sistemy distantsionnogo monitoring ISDM-Rosleshoz dlya opredeleniya pozharnoj opasnosti v lesah Rossijskoj Federatsii [User’s Guide for the remote monitoring information system ISDMRosleskhoz for determining fire danger in the forests of the Russian Federation], Pushkino, 2014, 399 p. (In Russian)

12. Shihov A.N., Zaripov A.S. Mnogoletnyaya dinamika poter’ lesov ot pozharov i vetrovalov na severo-vostoke Evropejskoj Rossii po sputnikovym dannym [Long-term dynamics of forest losses from fires and windfalls in the north-east of European Russia according to satellite data], Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space], 2018, vol. 15, no. 7, p. 114–128, DOI: 10.21046/2070-7401-2018-15-7-114-128. (In Russian)

13. Sukhinin A.I., French N.H.F., Kasischke E.S. et al. Satellitebased Mapping of Fires in Russia: New Products for Fire Management and Carbon Cycle Studies, Remote Sens. Environ., 2005, vol. 94, p. 428, DOI: 10.1016/j.rse.2004.08.011.

14. Vik K.V., Druki A.A., Grigoriev D.S., Spicyn V.G. Application of deep learning neural networks to solve the problem of segmentation of forest fires on satellite images, Vestnik Tomskogo gos. Un-ta, Upravlenie, vychislitel’naya tekhnika i informatika, 2021, no. 55, p. 18–25, DOI: 10.17223/19988605/55/3. (In Russian)

15. Informatsionnaya sistema distantsionnogo monitoring Federalnogo agentstva lesnogo hozyajstva [Information system for remote monitoring of the Federal Forestry Agency] (ISDM-Rosleskhoz), URL: https://pushkino.aviales.ru/main_pages/index.shtml (access date 13.02.2023). (In Russian)

16. Lesohozyajstvennye reglamenty lesnichestv Tverskoj oblasti [Forestry regulations of forest districts of the Tver region], URL: https://les.tver.ru/np-baza/np-dokumenty/lesnoyplan-i-reglamenty/ (access date 05.06.2023). (In Russian)


Review

For citations:


Zharinov S.N., Golubeva E.I., Zimin M.V. Assessment of pyrogenic impact on forest areas in the Tver region. Lomonosov Geography Journal. 2024;(1):125-132. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.79.1.10

Views: 122


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)