Preview

Lomonosov Geography Journal

Advanced search

QUANTITATIVE ASSESSMENT OF INTENSITY AND TRENDS OF EROSION AND ACCUMULATION PROCESSES ON CULTIVATED SLOPES WITHIN THE PLAVA RIVER BASIN (THE TULA OBLAST)

Abstract

The intensity of fluvial erosion and accumulation processes was evaluated for a small, mainly cultivated, catchment area within thePlavaRiver basin(theTulaoblast, the Srednerusskaya Upland). Three independent approaches were applied to evaluate the material movement within the area: soil-morphological profiles, modified combination of USLE and GGI equation, radiocaesium method. Comparison of the results provided sufficient information for the calculation of sediment budget. The catchment under study has largely negative balance of sediments, i.e. about 80% of matter from the cultivated slopes is exported to the main river through the catchment outlet. The analysis of topographic maps and space images for different dates allowed reconstructing the history of land use of the catchment under study, i.e. identifying the arable lands for five time periods. A tentative scheme of the catchment area functioning during the period of the most intensive agricultural development (after the 1861 land tenure reform) is suggested. It takes into account the trends of selfevolution of the balkas system and the dynamics of land use types boundaries.

About the Authors

D. A. Bezukhov
Lomonosov Moscow State University
Russian Federation


V. R. Belyayev
Lomonosov Moscow State University
Russian Federation


N. N. Ivanova
Lomonosov Moscow State University
Russian Federation


References

1. Бобровицкая Н.Н. Эмпирический метод расчета смыва со склонов // Сток наносов, его изучение и географическое распределение. Л.: Гидрометеоиздат, 1977. С. 202—211.

2. Голосов В.Н. Эрозионно-аккумулятивные процессы в речных бассейнах освоенных равнин. М.: ГЕОС, 2006. 296 с.

3. Голосов В.Н., Маркелов М.В., Беляев В.Р., Жукова О.М. Проблемы определения пространственной неоднородности выпадений 137Сs для оценки темпов эрозионно-аккумулятивных процессов // Метеорология и гидрология. 2008. № 4. С. 30—45.

4. Зорина Е.Ф. Овражная эрозия: закономерности и потенциал развития. М.: ГЕОС, 2003. 170 с.

5. Иванова Н.Н., Голосов В.Н., Маркелов М.В. Сопоставление методов оценки интенсивности эрозионно-аккумулятивных процессов на обрабатываемых склонах // Почвоведение. 2000. № 7. С. 898—906.

6. Ларионов Г.А. Эрозия и дефляция почв. М.: Изд-во Моск. ун-та, 1993. 200 с.

7. Ларионов Г.А., Литвин Л.Ф., Ажигиров А.А. Аккумулятивные (наносные) почвы как индикатор водной эрозии // География и природные ресурсы. 1990. № 3. С. 142—146.

8. Маркелов М.В. Современные эрозионно-аккумулятивные процессы в верхних звеньях гидрографической сети лесной и лесостепной зон. М.: Изд-во Моск. ун-та, 2004. 198 с.

9. Belyaev V.R., Golosov V.N., Kuznetsova J.S., Markelov M.V. Quantitative assessment of effectiveness of soil conservation measures using a combination of 137Cs radioactive tracer and conventional techniques // Catena. 2009. Vol. 79. P. 214—227.

10. Belyaev V., Shamshurina E., Markelov M. et al. Quantification of river basin sediment budget based on reconstruction of the post-Chernobyl particle-bound 137Cs redistribution // Erosion and Sediment Yields in the Changing Environment. IAHS Publ. Vol. 356. Wallingford, 2012. P. 394—403.

11. Evrard, O., Belyaev V., Chartin C. et al. Tracing the dispersion of sediment contaminated with radionuclides in catchments exposed to Chernobyl and Fukushima fallout // Erosion and Sediment Yields in the Changing Environment. IAHS Publ. Vol. 356. Wallingford, 2012. P. 412—417.

12. Golosov V., Panin A., Markelov M. Chernobyl 137Cs redistribution in the small basin of the Lokna river, Central Russia // Physics and Chemistry of the Earth. 1999. Vol. 24, N 10. P. 881—885.

13. Panin A.V., Walling D.E., Golosov V.N. The role of soil erosion and fluvial processes in the post-fallout redistribution of Chernobyl-derived caesium-137: a case study of the Lapki catchment, Central Russia // Geomorphology. 2001. Vol. 40. P. 185—204.

14. Pimentel D., Harvey C., Resoduramo P. et al. Environmental and economic costs of soil erosion and conservation benefits // Science. 1995. Vol. 267. P. 1117—1123.

15. Pimentel D. Soil erosion: a food and environmental threat // Environment, Development and Sustainability. 2006. Vol. 8. P. 119—137.

16. Renard K., Foster G., Weesies G. et al. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) // USDA Agriculture Handbook. 1997. Vol. 703. 384 p.

17. Walling D.E., He Q. Improved models for estimating soil erosion rates from cesium-137measurements // Environment. Quality. 1999. N 28. P. 611—622.

18. Wishmeier W.H., Smith D.D. Predicting rainfall erosion losses from cropland east of the rocky mountains // ARS— USDA in Cooperation with Purdue University, Purdue Agric. Exp. Sta. Handbook. 1965. Vol. 282. 15 p.


Review

For citations:


Bezukhov D.A., Belyayev V.R., Ivanova N.N. QUANTITATIVE ASSESSMENT OF INTENSITY AND TRENDS OF EROSION AND ACCUMULATION PROCESSES ON CULTIVATED SLOPES WITHIN THE PLAVA RIVER BASIN (THE TULA OBLAST). Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2014;(6):16-23. (In Russ.)

Views: 643


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)