Preview

Lomonosov Geography Journal

Advanced search

Environmental changes during the Boreal transgression in the North-Eastern White Sea region (detailed case study of Bychye-2 sediment section)

https://doi.org/10.55959/MSU0579-9414.5.78.4.5

Abstract

Detailed multiproxy (lithology, micropaleontology, palynology) study of a 455 cm thick marine sediment sequence overlying the Moscovian till exposed in Bychye-2 section on the Pyoza River allowed for reconstructing past environmental changes during the Boreal transgression. Stratigraphic subdivision is based on the succession of local palynological zones that were correlated with previously established regional zones. The latter are constrained on the basis of correlation with the West European palynological zones. Marine sediments of Bychye-2 section accumulated from the end of the Moscovian glacial (>131 ka BP) until ca. 119,5 ka BP. Five ecological zones were established in the section in accordance with the upward trends in the changes in lithology and variability in the taxonomic composition of fossil assemblages of benthic foraminifers and ostracods and associations of marine dinocysts and freshwater green microalgae. Taken together, they are indicative of the progressive shallowing of the basin under the improving climatic conditions, which primarily influenced the degree of sea-ice cover extent. Three successive phases in the evolution of the Boreal transgression have been identified: 1) a seasonally sea-ice covered relatively deep freshened basin of the initial phases of flooding (455–360 cm, >131–130,5 ka BP); 2) a deep basin of the maximum phase of flooding with less extensive sea-ice cover (360–290 cm, 130,5–130,25 ka BP); 3) a shallow basin with reduced seasonal sea-ice cover (290–0 cm, 130,25–119,5 ka BP). The flooding of the territory with cold Arctic waters was rapid, as evidenced by the composition of microfossil assemblages represented by river-proximal Arctic species in combination with the species that prefer water depths of at least 40–50 m. The regression in the region started about 130 ka BP, which indicates that the glacioisostatic rebound of the territory was ahead of the global eustatic sea level rise. The most warm-water and taxonomically diverse assemblages of foraminifers and ostracods, containing species typical of the Baltic Sea, were recorded during the regressive stage, especially in the time interval of ~128–124 ka BP. This probably gives evidence for a rather long-lasting connection of the White and Baltic seas.

About the Authors

E. E. Taldenkova
Lomonosov Moscow State University
Russian Federation

Faculty of Geography, Laboratory of Pleistocene Paleogeography, 1 Leading Scientifi c Researcher, Ph.D. in Geography



Ya. S. Ovsepyan
Geological Institute RAS
Russian Federation

Laboratory of biostatigraphy and paleogeography of the oceans, Senior Scientifi c Researcher, Ph.D. in Geology and Mineralogy



O. V. Rudenko
Orel State University named after I.S. Turgenev, Institute of Natural Sciences and Biotechnology
Russian Federation

Chair of Geography, Ecology and General Biology, Associate Professor, Ph.D. in Geography



A. Yu. Stepanova
Paleontological Institute RAS
Russian Federation

Laboratory of Protistology, Senior Scientifi c Researcher, Ph.D. in Geology and Mineralogy



H. A. Bauch
Alfred Wegener Institute for Polar and Marine Research
Germany

Bremerhaven/GEOMAR, Kiel, Ph.D. in Geology



References

1. Abrukina R.E., Krasil’nikova G.N. [Foraminifers of marine interglacial deposits of the Kola-Karelia region, their stratigraphic importance and evolutionary history], Chetvertichnaya geologiya i geomorfologiya vostochnoi chasti Baltiiskogo shchita. Trudy instituta geologii. Karel’skii filial AN SSSR [Quaternary geology and geomorphology of the eastern Baltic shield. Proc. Institute of Geology. Karelian Branch AS USSR], 1972, no. 13, p. 39–58. (In Russian)

2. Bauch H.A. Interglacial climates and the Atlantic meridional overturning circulation: is there and Arctic controversy? Quat. Sci. Rev., 2013, vol. 63, p. 1–22, DOI: 10.1016/j.quascirev.2012.11.023.

3. Bauch H., Erlenkeuser H., Fahl K., Spielhagen R.F., Weinelt M.S., Andruleit H., Heinrich R. Evidence for a steeper Eemian than Holocene Sea surface temperature gradient between Arctic and sub-Arctic regions. Palaeogeogr., Palaeoclim., Palaeoecol., 1999, vol. 145, p. 95–117, DOI: 10.1016/S0031-0182(98)00104-7.

4. Beets D.J., Beets C.J., Cleveringa P. Age and climate of the late Saalian and early Eemian in the type-area, Amsterdam basin, the Netherlands, Quat. Sci. Rev., 2006, vol. 25, p. 876–885, DOI: 10.1016/j.quascirev.2005.10.001.

5. Dalton A.S., Gowan E.J., Mangerud J., Möller P., Lunkka J.P., Astakhov V. Last In terglacial (MIS 5e) sea level proxies in the glaciated Northern Hemisphere, Earth Syst. Sci. Data, 2022, vol. 14, p. 1447–1492, DOI: 10.5194/essd-14-1447-2022.

6. Devyatova E.I. Prirodnaya sreda pozdnego pleistotsena i ee vliyanie na rasselenie cheloveka v Severodvinskom basseine i v Karelii [Late Pleistocene environment and its influence on human settlement in the Severnaya Dvina River basin and in Karelia], Petrozavodsk, Karelia Publ., 1982, 156 p. (In Russian)

7. Frenzel P., Keyser D., Viehberg A. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 2010, vol. 39, p. 567–575, DOI: 10.1111/j.1502-3885.2009.00135.x.

8. Funder S., Demidov I., Yelovicheva Ya. Hydrography and mollusc faunas of the Baltic and the White Sea-North Sea seaway in the Eemian, Palaeogeogr., Palaeoclim., Palaeoecol., 2002, vol. 184, p. 275–304, DOI: 10.1016/S0031-0182(02)00256-0.

9. Gemery L., Cronin T.M., Briggs W.M., Brouwers E.M., Schornikov E., Stepanova A., Wood A.M., Yasuhara M. An Arctic and subarctic ostracode database: biogeographic and paleoceanographic applications, Hydrobiologia, 2015, vol. 786, no. 1, p. 59–95, DOI: 10.1007/s10750-015-2587-4.

10. Grichuk V.P. Late Pleistocene vegetation history, Late Quaternary Environments of the Soviet Union, A.A. Velichko, H.E. Wright, C.W. Barnosky (eds.), London, Longman, 1984, p. 155–179.

11. Grichuk V.P. Istoriya flory i rastitel’nosti Russkoi ravniny v pleistotsene [Pleistocene history of flora and vegetation of the Russian Plain], Moscow, Nauka Publ., 1989, 183 p. (In Russian)

12. Grøsfjeld K., Funder S., Seidenkrantz M.S., Glaister C. Last Interglacial marine environments in the White Sea region, northwestern Russia, Boreas, 2006, vol. 35, p. 493–520, DOI: 10.1080/03009480600781917.

13. Gudina V.I., Evzerov V.Ya. Stratigrafiya i foraminifery verkhnego pleistotsena Kol’skogo poluostrova [Upper Pleistocene stratigraphy and foraminifers of the Kola Peninsula], Novosibirsk, Nauka Publ., 1973, 146 p. (In Russian)

14. Ikonen L., Ekman I. Biostratigraphy of the Mikulino interglacial sediments in NW Russia: the Petrozavodsk site and a literature review, Annales Academiae Scientiarum Fennicae A III Geologica-Geographica, 2001, vol. 161, 88 p.

15. Komárek J., Marvan P. Morphological differences in natural populations of the genus Botryococcus (Chlorophyceae), Archiv für Protistenkunde, 1992, vol. 141, p. 65–100, DOI: 10.1016/S0003-9365(11)80049-7.

16. Komárek J., Jankovská V. Review of the green algal genus Pediastrum: implication for pollen-analytical research, Bibliotheca Phycologica, 2001, Band 108, 127 p.

17. Korsakova O. Pleistocene marine deposits in the coastal areas of Kola Peninsula (Russia), Quat. Int., 2009, vol. 206, p. 3–15, DOI: 10.1016/j.quaint.2008.11.004.

18. Korsun S.A., Pogodina I.A., Forman S.L., Lubinski D.J. Recent foraminifera in glaciomarine sediments from three arctic fjords of Novaja Zemlja and Svalbard, Polar Res., 1995, vol. 14(1), p. 15–31, DOI: 10.3402/polar.v14i1.6648.

19. Lambeck K., Purcell A., Funder S., Kjær K.H., Larsen E., Möller P. Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modeling, Boreas, 2006, vol. 35, p. 539–575, DOI: 10.1080/03009480600781875.

20. Lavrova M.A. [Correlation of the interglacial Boreal transgression of the northern USSR and Eemian transgression of the western Europe], Trudy instituta geologii Akad. Nauk Est. SSR [Proc. of the Institute of Geology, Academy of Sciences of Estonian SSR], 1961, vol. VIII, p. 74–88. (In Russian)

21. Marret F., Zonneveld K. Atlas of modern organic-walled dinoflagellate cyst distribution, Rev. Palaeobotany and Palynology, 2003, vol. 125, p. 1–200, DOI: 10.1016/S0034-6667(02)00229-4.

22. Matthiessen J., Kunz-Pirrung M., Mudie P.J. Freshwater chlorophycean algae in recent marine sediments of the Beaufort, Laptev and Kara Seas (Arctic Ocean) as indicators of river runoff, Intern. J. Earth Sci., 2000, vol. 89, p. 470–485, DOI: 10.1007/s005310000127.

23. Miettinen A., Head M.J., Knudsen K. Eemian sea-level highstand in the eastern Baltic Sea linked to long-duration White Sea connection, Quat. Sci. Rev., 2014, vol. 86, p. 158–174, DOI: 10.1016/j.quascirev.2013.12.009.

24. Müller H. Pollenanalytische Untersuchungen und Jahresschichtenz ahlungen an der eem-zeitlichen Kieselgur von Bispingen/Luhe, Geol. Jahrbuch, 1974, vol. A21, p. 19–169.

25. Nieuwenhove van N., Bauch H.A., Eynaud F., Kandiano E., Cortijo E., Turon J.-L. Evidence for delayed poleward expansion of North Atlantic surface waters during the last interglacial (MIS 5e), Quat. Sci. Rev., 2011, vol. 30, p. 934–946, DOI: 10.1016/j.quascirev.2011.01.013.

26. Ovsepyan Ya.S. Pozdnechetvertichnye foraminifery morya Laptevykh i rekonstruktsiya izmneniya sredy na osnove paleoekologicheskogo analiza [Late Quaternary foraminifers of the Laptev Sea and reconstruction of environmental changes on the basis of paleoecological analysis], Ph.D. Thesis in Geology and Mineralogy, Moscow, 2016, 240 p. (In Russian)

27. Polyak L., Korsun S., Febo L., Stanovoy V., Khusid T., Hald M., Paulsen B.E., Lubinski D.A. Benthic foraminiferal assemblages from the southern Kara Sea, a river-influenced arctic marine environment, J. of Foraminiferal Res., 2002, vol. 32, no. 3, p. 252–273, DOI: 10.2113/32.3.252.

28. Polyakova Ye.I., Dzhinoridze R.N., Novichkova T.S., Golovnina Ye.A. Diatoms and palynomorphs in the White Sea sediments as indicators of ice and hydrological conditions, Oceanology, 2003, vol. 43, suppl., p. 144–158.

29. Rasmussen T.L., Thomsen E., Kuijpers A., Wastegård S. Late warming and early cooling of the sea surface in the Nordic seas during MIS 5e (Eemian Interglacial), Quat. Sci. Rev., 2003, vol. 22, p. 809–821, DOI: 10.1016/S0277-3791(02)00254-8.

30. Rudenko O.V., Taldenkova E.E., Shkarubo S.I., Rudenko A.A. Izmenenniya pririodnoi sredy tsentral’noi vpadiny Berentseva moray v pozdnelednikov’e – golotsene [Past environmental changes in the Central Deep of the Barents Sea during Lateglacial and the Holocene], Vestn. Mosk. unta, Ser. 5, Geogr., 2022, no. 5, p. 123–139. (In Russian)

31. Steinsund P.I. Benthic foraminifera in the surface sediments of the Barents, Kara Seas: modern and late Quaternary applications. Dissertation, University of Tromsø, 1994.

32. Stepanova A., Taldenkova E., Bauch H.A. Recent Ostracoda of the Laptev Sea (Arctic Siberia): taxonomic composition and some environmental implications, Mar. Micropal., 2003, vol. 48, no. 1–2, p. 23–48, DOI: 10.1016/S0377-8398(02)00136-6.

33. Stepanova A., Taldenkova E., Simstich J., Bauch H.A. Comparison study of the modern ostracod associations in the Kara and Laptev seas: Ecological aspects, Mar. Micropal., 2007, vol. 63, p. 111‒142, DOI: 10.1016/j.marmicro. 2006.10.003.

34. Stepanova A., Obrochta S., Quintana Krupinski N.B., Hyttinen O., Kotilainen A., Andrén T. Late Weichselian to Holocene history of the Baltic Sea as reflected in ostracod assemblages, Boreas, 2019, vol. 48, no. 3, p. 761–778, DOI: 10.1111/bor.12375.

35. Stockmarr J. Tablets spores used in absolute pollen analysis, Pollen Spores, 1971, vol. 13, p. 616–621.

36. Szymańska N., Pawłowska J., Kucharska M., Kujawa A., Łącka M., Zajączkowski M. Impact of shelf-transformed waters (STW) on foraminiferal assemblages in the outwash and glacial fjords of Adventfjorden and Hornsund, Svalbard, Oceanologia, 2017, vol. 59, p. 525–540, DOI: 10.1016/j.oceano.2017.04.006.

37. Vernal de A., Rochon A., Turon J.-L., Matthiessen J. Orga - nic-walled dinoflagellate cysts: palynological tracers of seasurface conditions in middle to high latitude marine environments, Geobios, 1997, vol. 30, p. 905–920, DOI: 10.1016/S0016-6995(97)80215-X.

38. Zagwijn W.H. An analysis of Eemian climate in western and central Europe, Quat. Sci. Rev., 1996, vol. 15, p. 451–469, DOI: 10.1016/0277-3791(96)00011-X.

39. Zaretskaya N., Rybalko A., Repkina T., Shilova O., Krylov A. Late Pleistocene in the southeastern White Sea and adjacent areas (Arkhangel’sk region, Russia): Stratigraphy and palaeoenvironments, Quat. Int., 2021, vol. 605–606, p. 126–141, DOI: 10.1016/j.quaint.2020.10.057.

40. Zhuravleva A., Bauch H., Spielhagen R. Atlantic water heat transfer through the Arctic gateway (Fram Strait) during the last interglacial, Glob. Planet. Change, 2017, vol. 157, p. 232–243, DOI: 10.1016/j.gloplacha.2017.09.005.

41. Algae Base, National University of Ireland, Galway, 2020, URL: https://www.algaebase.org (access date 17.08.2021). NPP database, URL: https://non-pollen-palynomorphs.unigoettingen.de/ (access date 01.06.2022).

42. Mackiewicz A. Recent benthic Ostracoda from Hornsund, south Spitsbergen, Svalbard Archipelago, Polish Polar Res., 2006, vol. 27(1), p. 71–90, URL: https://journals.pan.pl/dlibra/publication/126754/edition/110608/content (access date 01.06.2022).

43. Taxonomy and distribution of modern organic-walled dinoflagellate cysts in surface sediments from the Northern Hemisphere: an update of Rochon et al., 1999, N. Nieuwenhove van, V. Pospelova, R.W. Jordan (eds.), Mar. Micropal., 2020, special vol. 159, URL: https://www.sciencedirect.com/journal/marine-micropaleontology/vol/159/suppl/C (access date 01.06.2022).

44. Zagwijn W.H. Sea-level changes in the Netherlands during the Eemian, Geologie en Mijnbouw, 1983, vol. 62, p. 437–450, URL: https://drive.google.com/file/d/0B7j8bPm9Cse0Si1tX1dSZzhWa2c/view?resourcekey=0--_sQQ0jvEzQk1pA6By7fNA (access date 01.06.2022).


Review

For citations:


Taldenkova E.E., Ovsepyan Ya.S., Rudenko O.V., Stepanova A.Yu., Bauch H.A. Environmental changes during the Boreal transgression in the North-Eastern White Sea region (detailed case study of Bychye-2 sediment section). Lomonosov Geography Journal. 2023;(4):51-65. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.78.4.5

Views: 163


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)