Preview

Lomonosov Geography Journal

Advanced search

Stages of sand bars formation in the entrance gates of the Volgograd Reservoir bays

https://doi.org/10.55959/MSU0579-9414.5.78.3.11

Abstract

   The secondary processes of alongshore transport and accumulation of sediments are the consequences of reshaping the shores of the Volgograd Reservoir. Alongshore sediment transfer promoted the segregation of bays from the main water area of the Volgograd Reservoir with abrasion-accumulative barriers. Classification of the bays according to the degree of evolution of abrasion-accumulative barriers in their entrance gates is the initial stage of complex research which is necessary to reveal the main patterns of the separation process. Application of the Earth remote sensing data and geoinformation technologies is the most effective to study the process in addition to field methods. The study is based on the satellite imagery of Google Earth program and data of field research of the bays in 2008, 2010–2016 and 2019–2020. Both analytical (cartographic, graphical, mathematical methods and methods of working with satellite images) and field (geometric leveling of abrasion-accumulative barriers and spits, and bathymetric survey of bays) research methods were applied. Morphometric parameters of the entrance gates to the bays of right and left coast of the Volgograd Reservoir were measured using the satellite images of Google Earth. Expedition materials and data received from satellite images were then compared. The difference in absolute values does not exceed double standard error. This indicates the reliability of applied research method. We calculated two coefficients for classification of bays. These coefficients considered width of the bay at the entrance gate, width of the coastal shallow water area at the entrance gate and length of above-water part of a sand bar or spit. Six classes of bays were identified according to the degree of evolution of abrasion-accumulative barriers at the entrance gates: opened bays (class 1), bays at the initial stage of segregation (2), bays at the active stage of segregation (3), bays at the final stage of segregation (4), closed bays, (5) and a specific class – bays with the entrance gates subjected to anthropogenic impact (6). The bay segregation becomes more active with the expansion of the coastal shallow water area at its entrance gate. Quick overgrowth by higher aquatic, herbaceous and tree-shrub vegetation takes place under the active formation of abrasion-accumulative barriers.

About the Authors

M. S. Baranova
Volzhskiy branch of the Volgograd State University
Russian Federation

Staff Member

Educational and scientific laboratory of regional systems researching

Volzhskiy



O. V. Filippov
Volzhskiy branch of the Volgograd State University
Russian Federation

Associate Professor, Ph. D. in Geography

Department of mathematics, informatics and natural sciences

Volzhskiy



A. I. Kochetkova
Volzhskiy branch of the Volgograd State University
Russian Federation

Associate Professor, Ph. D. in Biology

Department of Mathematics, informatics and natural sciences

Volzhskiy



E. S. Bryzgalina
Volzhskiy branch of the Volgograd State University
Russian Federation

Senior Lecturer

Department of mathematics, informatics and natural sciences

Volzhskiy



References

1. Badjukova E. N., Zhindarev L. A., Luk’janova S. A., Solov’eva G. D. Geologo-geomorfologicheskoe stroenie Baltijskoj (Vislinskoj) kosy [Geological and geomorphological structure of the Baltic (Vistula) Spit], Okeanologija, 2010, vol. 51, no. 4, p. 675–682. (In Russian)

2. Badjukova E. N., Zhindarev L. A., Luk’janova S. A., Solov’eva G. D. Stroenie kornevoj chasti Kurshskoj kosy [The structure of the root part of the Curonian Spit], Vestn. Mosk. Un-ta, Ser. 5, Geogr., 2010, no. 5, p. 53–59. (In Russian)

3. Bagnold R. A. Sand movement by waves: some small-scale experiments with sand of very low density, Journal of the Institution Civil Engineers, no. 5554, 27, 1947, p. 447–469.

4. Banach M. Morfodynamica strefy brzegowej zbiornica Włocławek, Wroclaw, Warszawa, Krakov, Prace Geograficzne IGiPZ PAN, 1994, 180 p. (In Polish)

5. Baranova M. S., Obedkova O. A., Kochetkova A. I., Bryzgalina E. S. Ekologicheskoe sostojanie zalivov ozernogo uchastka Volgogradskogo vodohranilishha v uslovijah obrazovanija ust’evyh abrazionno-akkumuljativnyh peresypej [Ecological state of bays of the lake area in the

6. Volgograd reservoir under formation of mouth abrasion-accumulative barriers], Geographical Environment and Living Systems, 2021, no. 3, p. 34–53, DOI: 10.18384/2712-7621-2021-3-34-53. (In Russian)

7. Bryksina N. A. Izuchenie dinamiki beregovoj zony Baltijskogo morja s ispol’zovaniem kosmicheskih snimkov [Studying the dynamics of the coastal zone of the Baltic Sea using satellite images], Vestn. Baltijskogo fed. Un-ta im. I. Kanta, 2014, vol. 1, p. 50–59. (In Russian)

8. Dmitrieva E. E., Makarenko S. A. Ispol’zovanie DZZ dlja ocenki sostojanija vodnyh ob”ektov [Using remote sensing data to assess the state of water objects], Modeli i tehnologii prirodoobustrojstva (regional’nyj aspekt), 2020, no. 2 (11), p. 85–91. (In Russian)

9. Filippov O. V., Zolotarev D. V., Solodovnikov D. A. [Ecological problems of bays and estuarial tributaries of the Volgograd reservoir in conditions of abrasion and alongshore sediment transport], Problemy kompleksnogo issledovanija Volgogradskogo vodohranilishha [Problems of a comprehensive study of the Volgograd reservoir], 2009, p. 119–142. (In Russian)

10. Habidov A. Sh., Zhindarev L. A., Trizno A. K. Dinamicheskie obstanovki rel’efoobrazovanija i osadkonakoplenija beregovoj zony krupnyh vodohranilishh [Dynamic conditions of relief formation and sedimentation of the coastal zone of large reservoirs], Novosibirsk, Nauka Publ., 1999, 192 p. (In Russian)

11. Hemmingsena M., Eikaas H., Marsdena D. A GIS approach to sediment displacement in mixed sand and gravel beach environment, Journal of Environmental Management, 2019, vol. 249, iss. 1, p. 109083, DOI: 10.1016/j.jenvman.2019.05.141.

12. Homchanovskij A. L. Modelirovanie litodinamicheskih processov na akkumuljativnyh beregah (na primere oz. Bajkal, ostrovnoj bar Jarki) [Modeling of lithodynamic processes on accumulative coasts (on the example of Baikal Lake, island bar Yarki)], Ph. D. Thesis in Geography, Petropavlovsk-Kamchatskij, 2021, 191 p. (In Russian)

13. Jarmalavičius D., Žilinskas G., Pupienis D. Geologic framework as a factor controlling coastal morphometry and dynamics. Curonian Spit, Lithuania, International Journal of Sediment Research, 2017, vol. 32, iss. 4, p. 597–603, DOI: https://doi.org/10.1016/j.ijsrc.2017.07.006.

14. Johnson D. Shore processes and shoreline development, New York, John Wiley and Sons, Ino. 1919, 584 p.

15. Kalyuzhnaya N. S., Kalyuzhnaya I. Yu., Khoruzhaya V. V., Samoteeva V. V., Sokhina E. N. [GIS-based experience of investigation the status of spawning areas within the upper section of the Tsimlyansk reservoir], InterKarto. InterGIS: Materialy mezhdunarodnoj konferencii [InterKarto. InterGIS: Materials of the international conference], 2017, vol. 23 (1), p. 308–322, DOI: 10.24057/2414-9179-2017-1-23-308-322. (In Russian)

16. Kaplin P. A., Leont’ev O. K., Luk’janova S. A., Nikiforov L. G. Berega [Coasts], Moscow, Mysl’ Publ., 1991, 479 p. (In Russian)

17. Kos’jan R. D., Kos’jan A. R., Krylenko V. V., Fedorova E. A. Distribution and composition of Anapa bay-bar sediments, Oceanology, 2020, vol. 60, no. 2, p. 267–278, DOI: 10.31857/S0030157420020057.

18. Kozyreva E. A., Kadetova A. V., Rybchenko A. A., Pellinen V. A., Svetlakov A. A., Tarasova Ju. S. Typification and the current state of the Baikal Lake shore, Water resources, 2020, vol. 47, no. 4, p. 651–662, DOI: 10.31857/S0321059620040070.

19. Kravcova V. I., Shumatiev V. V. Novye podhody k obrabotke raznovremennyh kosmicheskih snimkov na primere issledovanija dinamiki del’ty Urala [New approaches to multi-temporal space imagery processing (case study of studying the dynamics of the Ural River delta)], Geoinformatics, 2005, no. 3, p. 52–61. (In Russian)

20. Kutuzov A. V. Ispol’zovanie sovremennyh i arhivnyh dannyh DZZ dlja GIS monitoringa okolovodnyh ekosistem [Use of modern and archival remote sensing data for GIS monitoring of near-water ecosystems], Transformacija ekosistem, 2018, no. 1 (1), p. 86–90, URL: https://cyberleninka.ru/article/n/ispolzovanie-sovremennyh-i-arhivnyh-dannyh-dzz-dlya-gis-monitoringa-okolovodnyh-ekosistem. (In Russian)

21. Leont’ev I. O. Calculation of longshore sediment transport, Oceanology, 2014, vol. 54, no. 2, p. 205–211.

22. Leont’ev I. O., Akivis T. M. Modeling the coastal dynamics of the Anapa bay-bar, Oceanology, 2020, vol. 60, no. 2, p. 279–285, DOI: 10.31857/S0030157420020069.

23. Leontev O. K. Osnovy geomorfologii morskikh beregov [Fundamentals of geomorphology of the seashore], Moscow, Moscow University Publishing House, 1961, 418 p. (In Russian)

24. Nazarov N. N., Nikonorova I. V., Filippov O. V., Frolova I. V. [Large accumulative formations of coastal zones of reservoirs], Erozionnye i ruslovye processy [Erosion and channel processes], 2015, no. 6, p. 199–207. (In Russian)

25. Nazarov N. N., Tjunjatkin D. G., Frolova I. V., Cherepanov A. V. Morfolitogenez v zone vdol’beregovogo perenosa nanosov na Kamskom vodohranilishhe [Morpholithogenesis in the zone of alongshore sediment transport in the Kama reservoir], Geographical Bulletin, 2013, no. 1 (24), p. 33–39. (In Russian)

26. Orlova E. V. Primenenie GIS-tehnologij dlja poluchenija gidrologicheskih harakteristik vodosbora Viljujskogo vodohranilishha [The use of GIS technologies in obtaining hydrological characteristics for the drainage area of the Vilyui Reservoir], Geografija i prirodnye resursy, 2008, iss. 3, p. 134–139. (In Russian)

27. Potakhin M. S., Zobkov M. B., Gurbich V. A. [The development and application of digital elevation of the lake Onego basin and catchment area], Trudy VI MNPK “Sovremennye problemy vodohranilishh i ih vodosborov” [Proceedings of VI International Scientific Practical Conference “Modern problems of reservoirs and their catchments”], 2017, vol. 1, p. 140–145. (In Russian)

28. Pyshkin B. A., Maksimchuk V. L., Cajtc V. L. Issledovanie vdol’beregovogo dvizhenija nanosov na morjah i vodohranilishhah [Research of the alongshore movement of sediments in the seas and reservoirs], Kiev, Naukova Dumka Publ., 1967, 142 p. (In Russian)

29. Shujskij Ju. D. Problemy issledovanija balansa nanosov v beregovoj zone morej [Problems of studying the sediments balance in the coastal zone of the seas], Gidrometeoizdat, 1986, 240 p. (In Russian)

30. Stupin V. P. Analiz vozmozhnostej ispol’zovanija dannyh Google Earth v interesah monitoringa dinamiki morfosistem zony vlijanija kaskada angarskih vodohranilishh [Analysis of the possibilities of using Google Earth data in the interests of monitoring the dynamics of morphosystems in the zone of influence of the Angara reservoir cascade], Vestn. Irkutskogo gos. tehnicheskogo un-ta, 2011, no. 8, p. 46–54. (In Russian)

31. Valientea N. G., Masselink G., McCarroll R. J., Scott T., Conley D., King E. Nearshore sediment pathways and potential sediment budgets in embayed settings over a multi-annual timescale, Marine Geology, 2020, vol. 427, p. 106270, DOI: 10.1016/j.margeo.2020.106270.

32. Vendrov S. L. [About channel processes in large reservoirs (based on observations of 1952–1955 for the Tsimlyansk reservoir)], Ruslovye processy [Channel processes], 1958, p. 228–248. (In Russian)

33. Vendrov S. L. O dinamike beregovoj zony Cimljanskogo vodohranilishha [About the dynamics of the Tsimlyansk reservoir coastal zone], Izvestija AN SSSR, Serija geograficheskaja, 1955, no. 25, p. 16 (In Russian)

34. Zakonnov V. V., Zakonnova A. V., Tsvetkov A. I., Sherysheva N. G. Gidrodinamicheskoe processy i ih rol’ v formirovanii donnyh osadkov vodohranilishh Volzhsko-Kamskogo kaskada [Hydrodynamic processes and their role in the formation of bottom sediments of the reservoirs

35. of the Volga-Kama cascade], Trudy IBVV RAN, 2018, iss. 81(84), p. 35–46, DOI: 10.24411/0320-3557-2018-10004. (In Russian)

36. Zenkovich V. P. Osnovy uchenija o razvitii morskih beregov [Fundamentals of the doctrine about the evolution of sea coasts], Moscow, Publ. Аkademii nauk SSSR, 1962, 710 p. (In Russian)

37. Kosmicheskaya s”emka SKANEKS [Space imagery SCANEX], URL: https://www.scanex.ru/data/satellites/ (access date 20. 12. 2021). (In Russian)

38. Ouillon S. Why and How Do We Study Sediment Transport? Focus on Coastal Zones and Ongoing Methods, Water, 2018, vol. 390, no. 10 (4), URL: https://www.mdpi.com/2073-4441/10/4/390/htm (access date 10. 02. 2020), DOI: 10.3390/w10040390.

39. Google Earth, URL: https://www.google.ru/intl/ru/earth/ (access date 02/12/2022).

40. Maxar – search and discovery of archives, URL: https://discover.maxar.com/ (access date 12/20/2021).


Review

For citations:


Baranova M.S., Filippov O.V., Kochetkova A.I., Bryzgalina E.S. Stages of sand bars formation in the entrance gates of the Volgograd Reservoir bays. Lomonosov Geography Journal. 2023;(3):137-151. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.78.3.11

Views: 464


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)