Fluidogenic landforms within the permafrost zone on the shelf of the Pechora and Kara seas
https://doi.org/10.55959/MSU0579-9414.5.78.3.9
Abstract
The study is based on the results of multibeam echo-sounding and high-frequency seismic profiling du ring the 2018–2022 cruises of the R/V “Akademik Nikolai Strakhov” and “Akademik Boris Petrov”. Regular changes of morphometric parameters and the internal structure of pingo-like formations of the shelves of the Pechora and Kara seas were revealed. A morphometric analysis of pingo-like formations was carried out, which made it possible to draw conclusions about their relative age, as well as the role of near-bottom currents and slope processes in their modern dynamics. It was found that the density and morphological variety of pingo-like formations depend on the geological and tectonic features of the bottom area, the presence and nature of permafrost, the intensity of degassing, and the time of shelf flooding during the Holocene transgression. Pingo-like formations on the shelf, where the depth exceeds 70–80 m, emerged at the early stages of the Holocene transgression, and by now the permafrost there has largely thawed out. At the same time, pingo-like formations are still prominent in the relief and actively transformed by bottom currents, slope and, possibly, pseudovolcanic processes associated with ongoing degassing. Pingo-like formations are rare within shallow (up to 20–30 m) shelf areas close to the shore, and, apparently, continue their evolution at present. At the same time, the large thickness and continuity of permafrost prevent active fluid flow, acting as a seal. Pingo-like formations in the shallow-water zones are mainly cone-shaped mounds without intensive degassing. The density of pingo-like formations is maximum at the intermediate depths (from 20–30 to 70–80 m), in the presence of insular or discontinuous permafrost, under high fluid flow intensity within the fault zones and oil- and gas-bearing structures. Near-surface sediments in such areas are characterized by a combination of localized processes of heaving and active degassing. It predetermines a wide variety of the morphological types of pingo-like formations.
Keywords
About the Authors
A. V. KokhanRussian Federation
Laboratory of geology and tectonics of sea bottom
Moscow
E. A. Moroz
Russian Federation
Laboratory of geology and tectonics of sea bottom
Moscow
E. A. Eremenko
Russian Federation
Laboratory of geology and tectonics of sea bottom
department of geomorphology and palaeogeography
geographical faculty
Moscow
A. P. Denisova
Russian Federation
Laboratory of geology and tectonics of sea bottom
department of geomorphology and palaeogeography
geographical faculty
Moscow
R. A. Ananiev
Russian Federation
laboratory of seismic stratigraphy
Moscow
E. A. Sukhik
Russian Federation
laboratory of heat and mass transfer
Moscow
S. L. Nikiforov
Russian Federation
laboratory of seismic stratigraphy
Moscow
S. Yu. Sokolov
Russian Federation
Laboratory of geology and tectonics of sea bottom
Moscow
A. A. Razumovskiy
Russian Federation
laboratory of folded belts
Moscow
References
1. Biryukov V. Ju., Ermolov A. A., Ogorodov S. A. Rel’ef dna Bajdarackoj guby Karskogo morja [Bottom relief of the Baidaratskaya Bay, inlet Kara Sea], Vestn. Mosk. Un-ta, Ser. 5, Geogr., 2008, no. 3, p. 80–84. (In Russian)
2. Bondarev V. N., Rokos S. I., Kostin D. A., Dlugach A. G., Poljakova N. A. Podmerzlotnye skoplenija gaza v verhnej chasti osadochnogo chehla Pechorskogo morja [Underpermafrost accumulations of gas in the upper part of sedimentary cover of the Pechora Sea], Geologiya i geofizika, 2002, vol. 43, no. 7, p. 587–598. (In Russian)
3. Gavrilov A., Pavlov V., Fridenberg A. et al. The current state and 125 kyr history of permafrost on the Kara Sea shelf: modeling constraints, The Cryosphere, 2020, vol. 14, p. 1857–1873, DOI: 10.5194/tc-14-1857-2020.
4. Judd A., Hovland M. Seabed Fluid Flow: the Impact on Geology, Biology and the Marine Environment, Cambridge University Press, 2007, 492 p.
5. Khutorskoi M. D., Podgornykh L. V., Gramberg I. S., Leonov Yu. G. Termotomografija Zapadno-Аrkticheskogo bassejna [Thermal tomography of the West Arctic Basin], Geotektonika, 2003, no. 3, p. 79–96. (In Russian)
6. Kamalov A. M., Ogorodov S. A., Birukov V. Ju., Sovershaeva G. D., Tsvetsinsky A. S., Arkhipov V. V., Belova N. G., Noskov A. I., Solomatin V. I. Morfolitodinamika beregov i dna Bajdarackoj guby na trasse perehoda magistral’nymi gazoprovodami [Coastal and seabed morpholithodyna-mics of the Baydaratskaya Bay at the route of gas pipeline crossing], Kriosfera Zemli, 2006, vol. 10, no. 3, p. 3–14. (In Russian)
7. Kostin D. A., Kuzin I. L., Lopatin B. G. Gosudarstvennaja geologicheskaja karta Rossijskoj Federacii masshtaba 1 : 1 000 000 (vtoroe pokolenie), list S-41-43, karta pliocen-chetvertichnyh obrazovanij [State geological map of the Russian Federation, Scale 1 : 1 000 000 (second generation), Sheet S-41-43, Map of the Pliocene-Quaternary formations], St.-Pete rsburg, VSEGEI Publ., 2004. (In Russian)
8. Kostin D. A. Miocenovaja del’ta Juzhno-Karskogo shel’fa [Miocene Delta of the South Kara Shelf], Bjulleten’ Moskovskogo obshhestva ispytatelej prirody, Otd. geol., 1998, vol. 73, iss. 5, p. 65–68. (In Russian)
9. Krapivner R. B. Priznaki neotektonicheskoj aktivnosti Barencevomorskogo shel’fa [Indications of neotectonic activity at the Barents Sea shelf], Geotektonics, 2007, vol. 41, no. 2, p. 73–89. (In Russian)
10. Lastochkin A. N. [Morphology and genesis of submarine valleys of the northern shelf of Eurasia], Vozrast i genezis pereuglublenij na shel’fah i istorija rechnyh dolin [Age and genesis of the overdeepenings on shelves and the history of river valleys], Moscow, Nauka Pabl., 1984, p. 22–28. (In Russian)
11. Mel’nikov V. P., Fedorov K. M., Vol’f A. A., Spesivcev V. I. Analiz vozmozhnogo scenarija obrazovanija pridonnyh ledjanyh bugrov na shel’fe Pechorskogo morja [Analysis of possible scenario of ice column formation on the Pechora Sea shelf], Kriosfera Zemli, 1998, vol. 11, no. 4, p. 51–57. (In Russian)
12. Mel’nikov V. P., Spesivcev V. I. Inzhenerno-geologicheskie i geokriologicheskie uslovija shel’fa Barenceva i Karskogo morej [Engineering-geological and geocryological features of the Barents and Kara seas shelf], Novosibirsk, Nauka Pabl., 1995, 194 p. (In Russian)
13. Mironyuk S. G. Fljuidogennye obrazovanija: obosnovanie vydelenija novoj geneticheskoj gruppy rel’efa morskogo dna [Fluidogenic Formations: Substantiation of the Identification of a New Genetic Group of Seabed Relief], VIII Shhukinskie chtenija: rel’ef i prirodopol’zovanie [VIII Schukin Conference: relief and nature management], Materialy Vserossijskoj konferencii s mezhdunarodnym uchastiem, 2020, p. 37–43. (In Russian)
14. Mironyuk S. G., Kolyubakin A. A., Golenok O. A., Roslyakov A. G., Terekhina Ja. E., Tokarev M. Ju. [The mud volcanic structures (vulcanoides) of the Kara Sea: morphological features and structure], Geologiya morej i okeanov [Geology of seas and oceans], Proceedings of XXIII International Conference on Marine Geology, Moscow, IO RAN, 2019, vol. 5, p. 192–196. (In Russian)
15. Nazarov D. V., Kostin D. A., Shishkin M. A., Fajbusov Ja. Je. Gosudarstvennaja geologicheskaja karta Rossijskoj Federacii masshtaba 1 : 1 000 000 (tret’e pokolenie), Zapadno-Sibirskaja serija, list R-42, karta pliocen-chetvertichnyh obrazovanij [State geological map of the Russian Federation, scale 1 : 1 000 000 (third generation), West Siberian series, Sheet R-42, Map of the Pliocene-Quaternary formations], St.-Petersburg, VSEGEI Publ., 2015. (In Russian)
16. Ogorodov S. A. Rel’efoobrazujushhaja dejatel’nost’ morskih l’dov [Relief-forming activity of sea ice], diss. … D. Sc. in Geography, Moscow, 2014, 261 p. (In Russian)
17. Overduin P., Schneider von Deimling T., Miesner F. et al. Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (SuPerMAP), Journal of Geophysical Research: Oceans, 2019, vol. 124, iss. 6, p. 3490–3507, DOI: 10.1029/2018JC014675.
18. Paull C. K., Dallimore S. R., Jin Y. K., Caress D. W. et al. Rapid seafloor changes associated with the degradation of Arctic submarine permafrost, PNAS, 2022, vol. 119, no. 12, DOI: 10.1073/pnas.2119105119.
19. Paull C. K., Lii W. U., Dallimore S. R., Blasco S. M. Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates, Geoph. Res. Lett., 2007, vol. 34, L01603, DOI: 10.1029/2006GL027977.
20. Portnov A., Mienert J., Serov P. Modeling the evolution of climate-sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf, J. Geophys. Res. Biogeosci, 2014, vol. 119, p. 2082–2094, DOI:10.1002/2014JG002685.
21. Portnov A., Smith A. J., Mienert J., Cherkashov G. et al. Offshore permafrost decay and massive seabed methane escape in water depths > 20 m at the South Kara Sea shelf, Geoph. Res. Lett., 2013, vol. 40 (15), p. 3962–3967, DOI:10.1002/grl.50735.
22. Rekant P. V., Vasil’ev A. A. Rasprostranenie subakval’nyh mnogoletnemerzlyh porod na shel’fe Karskogo morja [Distribution of subaqueous permafrost on the shelf of the Kara Sea], Kriosfera Zemli, 2011, vol. XV, no. 4, p. 69–72. (In Russian)
23. Rokos S. I., Tarasov G. A. Gazonasyschennye osadki gub i zalivov juzhnoj chasti Karskogo morja [Gas-saturated sediments of bays and gulfs of the southern part of the Kara Sea], Bjulleten’ komissii po izucheniju chetvertichnogo perioda, 2007, no. 67, p. 66–75. (In Russian)
24. Shpolyanskaya N. A. Plejstocen-golocenovaya istoriya razvitiya kriolitozony Rossijskoj Arktiki “glazami” podzemnyh l’dov [Pleistocene-Holocene history of the development of the permafrost zone of the Russian Arctic through the “eyes” of permafrost], Moscow, Izhevsk, In-t komp. issl. Pabl., 2015, 344 p. (In Russian)
25. Semenov P., Portnov A., Krylov A., Egorov A., Vanshtein B. Geochemical evidence for seabed fluid flow linked to the subsea permafrost outer border in the South Kara Sea, Geochemistry, 2020, vol. 80, no. 3, 125509, DOI: 10.1016/j.chemer.2019.04.005.
26. Serov P., Portnov A., Mienert J., Semenov P., Ilatovskaya P. Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost, J. Geophys. Res. Earth Surf., 2015, vol. 120, p. 1515–1529, DOI: 10.1002/2015JF003467.
27. Shearer J. M., Macnab R. F., Pelletier B. R., Smith T. B. Submarine pingos in the Beaufort Sea, Science, 1971, vol. 174 (4011), p. 816–818, DOI: 10.1126/science.174.4011.816.
28. Tulapin A. V., Rokos S. I., Dlugach A. G. [Seismic velocity modeling and dynamic analysis of the seismoacoustic images of PLF in the Pechora Sea], Relief and chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii [Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia], Proceedings of the annual conference on the results of expedition research, iss. 8, St. Petersburg, 2021, p. 246–251. (In Russian)
29. Viskunova K. G., Kalenich A. P., Markina N. V., Shkarubo S. I. Gosudarstvennaja geologicheskaja karta Rossijskoj Federacii masshtaba 1 : 1 000 000 (vtoroe pokolenie), Zapadno-Sibirskaja serija, list R-38-40, karta poleznyh iskopaemyh i prognoza neftegazonosnosti [State geological map of the Russian Federation, scale 1 : 1 000 000 (second generation), West Siberian series, sheet R-38-40, Map of minerals and oil and gas potential forecast], St.-Petersburg, VSEGEI Publ., 2003. (In Russian)
30. GEBCO_2014 Grid – version 20141103, URL: https://www.gebco.net/data_and_products/gridded_bathymetry_data/version_20141103 (access date 01. 09. 2022).
Review
For citations:
Kokhan A.V., Moroz E.A., Eremenko E.A., Denisova A.P., Ananiev R.A., Sukhik E.A., Nikiforov S.L., Sokolov S.Yu., Razumovskiy A.A. Fluidogenic landforms within the permafrost zone on the shelf of the Pechora and Kara seas. Lomonosov Geography Journal. 2023;(3):104-124. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.78.3.9